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Abstract— With the increasing influence of IoT devices in our 

daily lives, secure data-sharing is becoming ever more important. 

Sensors and other devices are communicating vast amounts of 

possibly unencrypted data, which poses a significant privacy 

concern. To tackle this problem, this research implements two 

Partially Homomorphic Encryption (PHE) schemes, RSA and the 

Paillier cryptosystem, to perform Secure Multiparty Computation 

(SMPC) in the resource-constrained IoT environment. The 

environment consists of a laptop connected to an Arduino Uno 

through a serial connection.  The RSA-based SMPC protocol has 

an average completion time of 2007ms. However, due to the 

inability to use padding, RSA lacks semantic security. Conversely, 

the Paillier-based protocol is semantically secure but cannot 

complete the encryption due to dynamic memory issues. Even if 

resolved, the estimated encryption time exceeds 103.3 minutes. 

Despite the potential of SMPC in IoT environments for secure 

data handling, the results from this research suggest that directly 

implementing PHE schemes on Arduino is not practical based on 

the observed limitations. 

 

Keywords— Secure Multiparty Computation, Internet of Things, 

Resource-constrained device, Partially Homomorphic Encryption 

I. INTRODUCTION 

The Internet of Things (IoT) has steadily grown over the last 

couple of decades[1]. With this growth, IoT devices are 

increasingly integral in daily life. These interconnected devices 

share sensitive data, making the confidentiality and integrity of 

information a substantial concern in the field of IoT security [2]. 

Furthermore, due to the nature of the IoT, there are additional 

constraints, such as limited resources, diversity of standards, 

and network vulnerabilities[3]. In this resource-constrained 

environment, challenges regarding privacy during data 

aggregation and transport encryption emerge[4][5]. Traditional 

cryptographic algorithms encounter challenges when applied to 

IoT scenarios due to inherent resource limitations such as 

power constraints, limited battery capacity, and the need for 

real-time execution[6]. Thus, this research focuses on 

addressing the critical privacy and security challenges in 

resource-constrained IoT environments by applying Secure 

Multiparty Computation (SMPC) techniques. 

A. Motivation 

The field of SMPC has flourished with the rise of cloud 

computing and data-sharing in IoT environments. However, the 

literature on the practical application of SMPC protocols on 

resource-constrained devices is lacking. Prior research has 

mostly been focused on developing secure protocols and testing 

them in virtual environments, rather than on devices like an 

Arduino. Therefore, this research aims to contribute to the 

literature by gaining insights into the practical application of 

SMPC in resource-constrained devices within the IoT 

environment. 

B. Background 

In the context of SMPC, a group of parties aims to 

collectively compute a function based on their private inputs 

whilst ensuring only the output is disclosed[7]. The problem 

was formally introduced as the Millionaires' Problem by 

Andrew Yao (1982)[8] and describes two millionaires who 

want to know which one of them is richer, without disclosing 

their actual wealth. Yao's millionaire problem is a Boolean 

predicate but was proven to be computationally feasible for any 

function in 1986, again by Yao[9]. One of the possible building 

blocks of SMPC is Homomorphic encryption (HE). HE allows 

for computations to be performed on encrypted data without the 

need of having to first decrypt it. The three main types of HE 

are: 

• Partially Homomorphic Encryption (PHE): Partially 

Homomorphic Encryption is the most computationally 

practical form of HE but is also the most mathematically 

limited. PHE schemes only support the evaluation of one 
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gate and the two operations of additive homomorphic 

encryption or multiplicative homomorphic encryption.   

• Somewhat Homomorphic Encryption (SHE): 

Somewhat Homomorphic Encryption can evaluate two 

types of gates but only for a subset of operations.  

• Fully Homomorphic Encryption (FHE): Fully 

Homomorphic Encryption allows the evaluation of 

arbitrary circuits made up of multiple gate types of 

unbounded depth. FHE is the strongest type of HE but is 

also the most computationally heavy.  

 

Middleware in IoT manages communication between 

hardware and applications, handling data collection, storage, 

analysis, processing, and forwarding to consumers[5]. 

However, it poses security risks as a high-value target for 

attackers. If not under the owner's control, the middleware may 

be untrustworthy, and outsourcing data to third parties raises 

concerns about data usage control, exemplified by potential 

privacy breaches in aggregating data from different sensors[7]. 

Additionally, IoT devices' resource-constrained nature limits 

their ability to perform complex data encryption compared to 

non-IoT devices[10]. Through extensive literature review, 

Secure Multi-Party Computation (SMPC) emerges as a 

promising solution for secure data-sharing in the resource-

constrained IoT environment. 

C. Research questions 

This research will investigate the following research 

questions (RQ). 

(1) How can a customized cryptographic protocol based on 

SMPC be implemented to ensure confidentiality and 

integrity of data shared among IoT devices, considering the 

specific constraints and requirements of IoT environments? 

(2) What is the practicality, efficiency, and security of the 

implemented SMPC-based cryptographic protocol in real-

world IoT use cases, and how do they compare with 

existing security solutions in terms of computation time, 

resource utilization, and power consumption? 

D. Structure 

Section II provides an overview of what is presented in the 

literature regarding the usage of SMPC to enhance privacy and 

security in IoT applications. Then section III documents the 

hardware and software configurations, implemented PHE 

schemes, and research metrics. The section concludes with an 

in-depth review of the testing environment and design choices. 

Next, section IV details the performance- and security analysis 

of the implemented PHE schemes. The performance analysis 

delves into computation time, power consumption, and 

memory usage, whilst the security analysis examines the 

security model, cryptographic key size and semantic security. 

Additionally, RQ1 and RQ2 are answered at the end of the 

section. The paper concludes with section V, which 

summarizes key findings and outlines potential avenues for 

future research. 

II. RELATED WORK 

The field of SMPC has been rapidly evolving over the years 

and many efficient protocols have been published. With the rise 

of more efficient protocols, the application of SMPC in IoT is 

also becoming more relevant. A study by authors in [11] offers 

two optimized SMPC protocols for the Internet-like setting. 

Their protocols are based on multiparty garbled circuits as 

described in the paper of Beaver, Micali and Rogaway[12]. 

Furthermore, they provide a protocol based on the paper from 

Ben-Or, Goldwasser and Widgerson[13] that incorporates the 

free-XOR technique as well as reducing round complexity. 

With these optimizations they reduced overall runtime from 

355 seconds to 25 and the online time from 330 seconds to <0.5 

seconds compared to the 1987 paper from Goldreich, Micali 

and Widgerson[13]. Another paper by authors in [15] looks at 

optimizing Shamir-Secret Sharing[16] (SSS) to achieve 

privacy-preserving data aggregation in the IoT environment. 

They optimized the sharing phase of SSS by lowering the 

degree of the polynomial. With this optimization, they managed 

to make their aggregation time 6 and 9 times faster as well as 

using 7 and 10 times less radio-on time in their testing 

environments (Flocklab and DCube respectively). Cloud 

computing has a lot of potential for SMPC in the IoT setting. 

Authors in [10] discussed the possibility of using the cloud to 

utilize Homomorphic encryption in the IoT environment. In 

their architecture, the IoT device encrypts their data and sends 

it to a cloud. Then a 'data user' can query for the data, which is 

then computed by the cloud and delivered. They concluded that 

resource-constrained IoT devices might not be able to afford 

the costs of Fully Homomorphic encryption. However, they did 

find that Partial Homomorphic encryption has great potential 

for resource-constrained IoT devices. The cloud can be used by 

IoT devices to offload their complex computations. Authors in 

[17] proposed a protocol based on a modified SSS[16] scheme 

where the source node can outsource its computation to a set of 

workers. The paper showed that the proposed protocol met the 

requirements of full anonymity, confidentiality, verification, 

and computation synchronization while also shifting most of 

the computational costs to the workers, ensuring correct results. 

These papers show that SMPC has great potential to be used in 

the IoT environment. 

III. METHODOLOGY 

This section details the methodology employed in the 

research. It begins with a description of the hardware and 

software setup, providing the foundation for algorithm 

implementation. Then, the research metrics are presented, 

followed by an outline of the chosen PHE schemes. The section 

concludes with insights into the practical implementation and 

testing environments used in the research. 

A. Hardware and software setup 

1) Tools: The hardware configuration includes an Arduino 

Uno with an ATmega328 microcontroller (32K bytes of 

flash memory), a MacBook Air powered by a 1.3 GHz Dual-

Core Intel Core i5 CPU (121 GB flash memory), and an 

AVHzY USB-Meter C3 designed for power consumption 

measurement. The software environments comprise of the 
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Arduino IDE 2.2.1, utilizing C/C++ and the microRSA and 

arduino-cryptographic-library libraries. Pycharm CE 2021.3 

supports Python 3.11, integrating libraries such as OpenSSL 

and python-paillier. 

 

B. Algorithms 

This paper focuses on implementing two PHE encryption 

schemes to cover both mathematical operations. RSA for its 

multiplicative property and the Paillier cryptosystem for its 

additive property. 

 

1) RSA: RSA is a public-key cryptosystem that relies 

on the practical difficulty of integer factorization[21] 

specifically for the product of two large prime numbers. 

RSA encryption is described by the following equation: 
 

𝐸(𝑚) = 𝑚𝑒 𝑚𝑜𝑑 𝑛  (1) 
 

In this equation, m represents the plaintext message, e is m.      

the public exponent, and n is the product of two large prime 

numbers, ensuring the security of the encryption scheme. 

The multiplicative homomorphic property of RSA is 

described by the equation: 
 

𝐸(𝑚1) ∗ 𝐸(𝑚2) = 𝑚1
𝑒𝑚2

𝑒 𝑚𝑜𝑑 𝑛  
                                       = (𝑚1 ∗ 𝑚2)𝑒 𝑚𝑜𝑑 𝑛 

                                 = 𝐸(𝑚1) ∗ 𝐸(𝑚2) 
 

This property highlights the ability to perform multiplication 

on the cyphertexts directly without the need for decryption. 

 

2) Paillier cryptosystem: The Paillier cryptosystem 

is a probabilistic public-key encryption scheme based on a 

discrete logarithm trapdoor modulo a large integer that is 

hard to factor[22]. Paillier encryption is described by the 

following equation: 
 

𝐸(𝑚) = 𝑔𝑚𝑟𝑛 𝑚𝑜𝑑 𝑛2 (2) 
 

In this equation, m represents the plaintext message, g is a 

generator of the multiplicative group modulo 𝑛2, and r is a 

random value chosen from the set {0,...,n-1}. The Paillier 

cryptosystem exhibits an additive homomorphic property, 

described by the equation: 
 

𝐸(𝑚1) ∗ 𝐸(𝑚2) = (𝑔𝑚1𝑟1
𝑛)(𝑔𝑚2𝑟2

𝑛)  𝑚𝑜𝑑 𝑛2  
                            = (𝑔𝑚1+𝑚2)(𝑟1𝑟2)𝑛 𝑚𝑜𝑑 𝑛2 

           = 𝐸(𝑚1) + 𝐸(𝑚2) 
 

This property enables the computation of the encryption of 

the sum of corresponding cyphertexts directly. 

 

C. Research metrics 

This research benchmarks implemented protocols based on 

performance and security metrics. Performance evaluation 

includes memory usage, power consumption, and computation 

time measured in bytes, volts, milliwatts, milliamperes, and 

milliseconds respectively. Security assessment focuses on 

analyzing security models, cryptographic key sizes, and 

semantic security to ensure robustness against adversarial 

behavior and encryption security. 

 

D. Implementation 

The laptop and Arduino Uno are connected via USB for 

Serial port communication, facilitating reliable data exchange. 

The laptop handles key generation tasks with a 1024-bit key 

size, using the Python subprocess library and OpenSSL for 

RSA operations and the python-paillier[20] library for Paillier 

encryption. The Arduino Uno employs a custom 'bignum8' 

structure for numbers up to 512 bytes in Paillier encryption. 

Implementation on the Arduino includes the RNG library for 

secure random number generation, modular arithmetic, and 

modular exponentiation to enhance computational efficiency 

for a robust and secure cryptographic system. 

 

1) RSA environments: For RSA encryption two different 

environments interact with each other, the Python- and 

Arduino environments. The Python environment generates 

a 1024-bit RSA key pair in PEM format by utilizing 

OpenSSL. Then the modulus n (Formula 2) is extracted 

from the public key and sent to the Arduino to be used in 

encryption. After the encryption is finished, the script 

receives the cyphertext from the Arduino and can calculate 

the final result by multiplying the two cyphertexts. Finally, 

the resulting cyphertext can be decrypted to check the 

correctness of the computation. 

The Arduino environment utilizes a modified version of 

the microRSA library to ensure compatibility with an IoT 

environment. The Arduino receives the modulus from the 

laptop and encrypts its plaintext message. The following 

cyphertext is then sent to the laptop for further calculations. 

 

2) Paillier environments: The Paillier encryption uses the 

same environment structure as the RSA encryption. The 

Python environment generates a 1024-bit Paillier key pair 

using the python-paillier library. The script then extracts the 

modulus n and squared modulus 𝑛2  (Formula 2) After 

extraction, the two values are sent over the serial connection. 

From here the same steps apply as in the RSA environment. 

The script waits for the encrypted Arduino message, 

computes the sum, and decrypts the final result.  

The Arduino environment uses an extended version of 

the microRSA library to implement the missing 

mathematical operations. Once the Arduino receives n and 

𝑛2 it can start encrypting its plaintext message. Finally, the 

Arduino sends the cyphertext back to the laptop.  

IV. RESULTS 

This section includes an examination of the SMPC protocols, 

shedding light on the performance and security aspects of the 

PHE schemes. With a primary focus on RSA and the Paillier 

cryptosystem, this section delves into the computation time, 

power consumption, and memory usage analyses. The 

performance analysis is followed by a security analysis which 

goes into the security model, cryptographic key size and 

semantic security. Finally, the section concludes with 

answering the research questions posed in the introduction. 
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A. Performance Analysis 

1) Computation time: This section explores the  

computation time of cryptographic operations, providing a 

comprehensive perspective on minimum, maximum, and 

average runtimes based on 100 sampled instances. Table 3 

presents the runtime analysis of the SMPC protocol 

utilizing RSA, covering key generation (Keygen), Python 

message encryption (EncryptP), laptop decryption 

(Decrypt), and Arduino message encryption (EncryptA). 

Notably, the overall protocol runtime is significantly 

influenced by the Arduino's encryption time, averaging 

1807ms, approximately 100 times slower than its Python 

counterpart. Key generation shows notable variability in 

both minimum and maximum times, but its infrequency is 

unlikely to significantly impact the overall protocol 

performance. 

TABLE 1: COMPUTATION TIME RSA 

RSA          Min     Average   Max 

Keygen       191ms   256ms     578ms 

EncryptA     1792ms  1807ms    1834ms 

EncryptP     12ms    17ms      32ms 

Decrypt      13ms    19ms      29ms 

Total        2008ms  2099ms    2473ms 

 

Table 4 provides a comprehensive breakdown of the 

computation time for the Paillier-based SMPC protocol on 

the laptop. Key generation (Keygen), encryption of Python 

messages (Encrypt), and decryption (Decrypt) are the key 

components analyzed. Key generation, similar to the RSA 

protocol, displays notable variability in both minimum and 

maximum times, but, as mentioned earlier, this variability 

is not expected to significantly impact the overall 

performance of the protocol due to the infrequency of key 

generation. 

TABLE 2: COMPUTATION TIME PAILLIER PYTHON 

Paillier 

Python  

 Min    Average   Max 

Keygen            108ms  356ms     1054ms 

Encrypt           24ms   32ms      51ms 

Decrypt           7ms    10ms      24ms 

Total             139ms  398ms     1129ms 

 

TABLE 3: COMPUTATION TIME ARDUINO MODULO 

Modulo in 

bytes  

 128   256   512 

128               1ms   922ms   2766ms 

256               0ms   2ms     3668ms 

 

TABLE 4: COMPUTATION TIME ARDUINO MULTIPLICATION 

Multiply in 

bytes  

 64    128   256 

64                  25ms  46ms  92ms 

128                 46ms  99ms  183ms 

256                 92ms  183ms  367ms 

  

Due to memory issues, the Paillier encryption on the 

Arduino faced constraints, impeding the acquisition of 

runtime data. An estimate, based on the computational 

demands of the most intensive task, modular 

exponentiation involving 256- and 512-byte numbers, can 

be derived. With 1024 cycles and additional executions, 

the modular exponentiation step comprises a combined 

1536 multiplications and modulo operations. Using data 

from Tables 5 and 6, the estimate suggests a total runtime 

of approximately 103.3 minutes for the function. 

 

2) Power consumption: The power analysis, outlined in 

Tables 7 and 8, sheds light on the energy demands of 

cryptographic algorithms implemented on the Arduino Uno. 

At 5.1 volts, the Arduino exhibited an average amperage of 

19.0mA when idle. During cryptographic operations (RSA, 

Multiply, and Modulate), the amperage only slightly 

increased to an average of 20.4mA, peaking at 21.2mA 

during modulation. These values remain well below the 

Arduino Uno's maximum power draw capacity of at least 

200.0mA[23]. The correlation between recorded amperage 

and wattage, validated through Ohm's Law (W = V * I), 

underscores the consistency of data across cryptographic 

functions. Consequently, the power consumption of these 

PHE schemes on the Arduino Uno is deemed negligible, 

indicating that power constraints should not pose significant 

challenges in implementing or discussing these 

cryptographic algorithms on the Arduino platform. 
 

TABLE 5: AMPERE USAGE ARDUINO 

 

 

TABLE 6: WATTAGE ARDUINO 

 

Function   Min      Average   Max 

RSA        102.9mW  103.8mW   105.8mW 

Multiply   104.9mW  106.3mW   110.2mW 

Modulate   103.7mW  104.2mW   106.2mW 

 

3) Memory Usage: In the evaluation of memory usage for 

the RSA and Paillier implementations on the Arduino, 

Table 9 provides a comprehensive overview of Flash and 

dynamic memory consumption before runtime. Both 

implementations stay well below the maximum thresholds 

of 32K and 2K respectively, with the RSA utilizing 6076 

bytes of Flash and 330 bytes of dynamic memory, while the 

Paillier implementation uses 10176 bytes of Flash and 493 

bytes of dynamic memory. Since the Arduino IDE does not 

support real-time memory analysis, the subsequent 

calculations are estimates based on line-by-line code 

analysis.  

TABLE 7: MEMORY BEFORE RUNTIME IN BYTES 

Memory type   Flash   Dynamic 

Function   Min      Average   Max 

RSA        20.1mA   20.4mA    20.8mA 

Multiply   20.2mA   20.3mA    20.5mA 

Modulate   20.1mA   20.4mA    21.2mA 
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RSA           6076    330 

Paillier      10176   493 

 

To gain insights into the dynamic memory usage during 

runtime, the memory flow over specific events is depicted in 

Figures 2 and 3. For the RSA implementation (Figure 1), the 

memory usage grows during key generation, message 

generation, and conversion to the custom bignum8 structure. 

The encryption phase introduces two temporary variables, 

reaching an estimated highest memory usage of 1226 bytes. 

The RSA implementation does not encounter memory issues. 

The Paillier encryption on the other hand (Figure 2) involves 

higher memory demands due to the reception of two large 

variables, n (128 bytes) and𝑛2(256 bytes). Additionally, during 

modular exponentiation, the memory usage variable of r peaks 

at 512 bytes. The estimated highest memory usage for the 

Paillier implementation is 1773 bytes, occurring during the 

modular exponentiation and the final cyphertext calculation. 

Despite these estimates not reaching or exceeding the Arduino's 

maximum memory capacity of 2048 bytes, the Paillier 

implementation experiences program breakdowns and outputs 

zero values, indicating potential memory-related issues. 

 

  

Figure 1: Estimated memory usage RSA 

 

Figure 2: Estimated memory usage Paillier 

B. Security analysis 

1) Security model: The security of a protocol is 

meaningful only when discussed under a specific security 

model, as the capabilities of the adversary define the security 

requirements. This paper assumes a Semi-honest Adversary 

Model as the security model during the execution of the 

protocol. In this model, corrupted parties must execute the 

protocol correctly. The adversary can obtain information on 

corrupted parties but will attempt to use this information 

discreetly. Protocols that achieve this level of security prevent 

the leakage of information between collaborating parties. 

 

2) Key size: NIST revised its recommendation for RSA 

key lengths in 2015, now advising a minimum of 2048 

bits[24]. This update supersedes the consensus which 

advocated for a minimum key size of 1024 bits. Consequently, 

the use of a 1024-bit key in encryption is discouraged for 

safeguarding sensitive or critical data. However, if the key's 

lifespan or the protected data spans only days or weeks, the 

necessity for employing a key resistant to years-long attacks 

diminishes. The choice of key size and its associated security 

considerations in the context of the IoT environment would 

be contingent on specific usage. It's noteworthy that 1024-bit 

keys represent the upper limit of what an Arduino Uno, 

without additional memory extensions, can effectively 

manage. 

 

3) Semantic security: The intrinsic homomorphic 

property of RSA makes the algorithm susceptible to semantic 

insecurity in the absence of proper padding. The lack of 

semantic security renders the encryption vulnerable to 

potential attacks such as Chosen Plaintext and Message 

Replay. The introduction of padding however destroys the 

homomorphic property, making performing SMPC 

impossible. The Paillier cryptosystem does offer semantic 

security against chosen-plaintext attacks. The successful 

distinction of the challenge cyphertext boils down to the 

ability to make decisions about composite residuosity, a task 

considered computationally intractable under the assumption 

of decisional composite residuosity. However, despite 

providing semantic security against chosen-plaintext attacks, 

the system exhibits malleability due to its homomorphic 

properties. Thus, it does not achieve the highest level of 

semantic security, lacking protection against adaptive 

chosen-cyphertext attacks. 

 

C. Answering RQ1 

A customized SMPC protocol based on PHE schemes can 

ensure the confidentiality and integrity of data through the 

homomorphic properties of the algorithms. PHE schemes are 

the least computationally complex type of HE and are therefore 

a logical consideration for the resource-constrained IoT 

environment. With these homomorphic properties, one can 

compute results based on cyphertexts rather than on plaintext. 

This ensures that the context of the numbers is lost and the 

parties involved do not learn any information about the other 

participating parties. This protocol can be further extended by 

implementing secret-sharing techniques like SSS or Oblivious 

Transfer when distributing keys or cyphertexts. 

 

D. Answering RQ2 

The practicality of implementing the RSA and Paillier PHE 

schemes on a resource-constrained device is rather lacking, as 

efficiency and security perform insufficiently for the IoT 
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environment. For the RSA algorithm, encryption takes on 

average 1807ms which is too long for the often real-time data 

needed in the IoT environment. Furthermore, the RSA 

algorithm cannot make use of padding which makes it 

semantically insecure. This results in the fact that parties can 

gain knowledge about other participating parties, which goes 

against SMPC requirements. The Paillier encryption on the 

other hand is semantically secure but cannot finish encryption 

due to running out of dynamic memory. Even if the Paillier 

algorithm could finish an encryption, this would take at least 

103,3 minutes. Again, this is way too long for any practical 

application in the IoT environment. The security status of the 

chosen 1024-bit key size is contingent on the usage of the 

protocol, therefore no concrete conclusion can be made 

regarding key size other than the fact that the protocols should 

not be used to store critical data. Power consumption is the only 

characteristic that both algorithms perform sufficiently. 

However, this does not weigh up against the lack of 

computational efficiency and security. 

V. CONCLUSIONS 

Privacy and security are pivotal in data-sharing within the 

IoT environment. Despite this, there is a noticeable gap in the 

literature regarding the practical implementation of SMPC 

protocols on resource-constrained devices within the IoT [25]. 

This research details the implementation of two PHE-based 

SMPC protocols on the resource-constrained Arduino Uno. 

One protocol is built upon the RSA cryptosystem, and the other 

is based on the Paillier cryptosystem. The protocols underwent 

benchmarking and security analysis. For the performance, 

metrics important to resource-constrained devices such as 

memory usage, power consumption, and computation time 

were tested [26]. Whereas the security analysis delves into the 

security model, semantic security, and cryptographic key size. 

Based on the results of this research I conclude that SMPC 

shows great potential for the resource-constrained IoT 

environment. However, it is not practical to directly implement 

Partially Homomorphic Encryption schemes on a resource-

constrained device like the Arduino Uno with the goal of SMPC.  

I would discourage attempts to optimize RSA and Paillier 

encryption on the Arduino and instead focus on offloading 

complex computations and encryptions through the use of 

cloud computing and secure data offloading. With these 

techniques, one could utilize even more robust encryption 

algorithms more efficiently than the Arduino can. 
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