
Proceedings Paper DOI: 10.58190/icisna.2024.92

PROCEEDINGS OF

INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND NEW

APPLICATIONS

https://proceedings.icisna.org/

2nd International Conference on Intelligent Systems and New Applications (ICISNA'24), Liverpool, April 26-28, 2024.

64

Enhancing Privacy and Security in IoT

Environments through Secure Multiparty

Computation
Rik van de Haterd1, Mohammed Elhajj2

1EEMCS, University of Twente, Netherlands

r.vandehaterd@student.utwente.nl, ORCID: 0009-0007-4252-2033
2EEMCS, University of Twentet, Netherlands

m.elhajj@utwente.nl, ORCID: 0000-0002-5549-4357

Abstract— With the increasing influence of IoT devices in our

daily lives, secure data-sharing is becoming ever more important.

Sensors and other devices are communicating vast amounts of

possibly unencrypted data, which poses a significant privacy

concern. To tackle this problem, this research implements two

Partially Homomorphic Encryption (PHE) schemes, RSA and the

Paillier cryptosystem, to perform Secure Multiparty Computation

(SMPC) in the resource-constrained IoT environment. The

environment consists of a laptop connected to an Arduino Uno

through a serial connection. The RSA-based SMPC protocol has

an average completion time of 2007ms. However, due to the

inability to use padding, RSA lacks semantic security. Conversely,

the Paillier-based protocol is semantically secure but cannot

complete the encryption due to dynamic memory issues. Even if

resolved, the estimated encryption time exceeds 103.3 minutes.

Despite the potential of SMPC in IoT environments for secure

data handling, the results from this research suggest that directly

implementing PHE schemes on Arduino is not practical based on

the observed limitations.

Keywords— Secure Multiparty Computation, Internet of Things,

Resource-constrained device, Partially Homomorphic Encryption

I. INTRODUCTION

The Internet of Things (IoT) has steadily grown over the last

couple of decades[1]. With this growth, IoT devices are

increasingly integral in daily life. These interconnected devices

share sensitive data, making the confidentiality and integrity of

information a substantial concern in the field of IoT security [2].

Furthermore, due to the nature of the IoT, there are additional

constraints, such as limited resources, diversity of standards,

and network vulnerabilities[3]. In this resource-constrained

environment, challenges regarding privacy during data

aggregation and transport encryption emerge[4][5]. Traditional

cryptographic algorithms encounter challenges when applied to

IoT scenarios due to inherent resource limitations such as

power constraints, limited battery capacity, and the need for

real-time execution[6]. Thus, this research focuses on

addressing the critical privacy and security challenges in

resource-constrained IoT environments by applying Secure

Multiparty Computation (SMPC) techniques.

A. Motivation

The field of SMPC has flourished with the rise of cloud

computing and data-sharing in IoT environments. However, the

literature on the practical application of SMPC protocols on

resource-constrained devices is lacking. Prior research has

mostly been focused on developing secure protocols and testing

them in virtual environments, rather than on devices like an

Arduino. Therefore, this research aims to contribute to the

literature by gaining insights into the practical application of

SMPC in resource-constrained devices within the IoT

environment.

B. Background

In the context of SMPC, a group of parties aims to

collectively compute a function based on their private inputs

whilst ensuring only the output is disclosed[7]. The problem

was formally introduced as the Millionaires' Problem by

Andrew Yao (1982)[8] and describes two millionaires who

want to know which one of them is richer, without disclosing

their actual wealth. Yao's millionaire problem is a Boolean

predicate but was proven to be computationally feasible for any

function in 1986, again by Yao[9]. One of the possible building

blocks of SMPC is Homomorphic encryption (HE). HE allows

for computations to be performed on encrypted data without the

need of having to first decrypt it. The three main types of HE

are:

• Partially Homomorphic Encryption (PHE): Partially

Homomorphic Encryption is the most computationally

practical form of HE but is also the most mathematically

limited. PHE schemes only support the evaluation of one

https://doi.org/10.58190/icisna.2024.92
https://proceedings.icisna.org/
https://orcid.org/0000-0002-5549-4357

International Conference on Intelligent Systems and New Applications (ICISNA'24)

65

gate and the two operations of additive homomorphic

encryption or multiplicative homomorphic encryption.

• Somewhat Homomorphic Encryption (SHE):

Somewhat Homomorphic Encryption can evaluate two

types of gates but only for a subset of operations.

• Fully Homomorphic Encryption (FHE): Fully

Homomorphic Encryption allows the evaluation of

arbitrary circuits made up of multiple gate types of

unbounded depth. FHE is the strongest type of HE but is

also the most computationally heavy.

Middleware in IoT manages communication between

hardware and applications, handling data collection, storage,

analysis, processing, and forwarding to consumers[5].

However, it poses security risks as a high-value target for

attackers. If not under the owner's control, the middleware may

be untrustworthy, and outsourcing data to third parties raises

concerns about data usage control, exemplified by potential

privacy breaches in aggregating data from different sensors[7].

Additionally, IoT devices' resource-constrained nature limits

their ability to perform complex data encryption compared to

non-IoT devices[10]. Through extensive literature review,

Secure Multi-Party Computation (SMPC) emerges as a

promising solution for secure data-sharing in the resource-

constrained IoT environment.

C. Research questions

This research will investigate the following research

questions (RQ).

(1) How can a customized cryptographic protocol based on

SMPC be implemented to ensure confidentiality and

integrity of data shared among IoT devices, considering the

specific constraints and requirements of IoT environments?

(2) What is the practicality, efficiency, and security of the

implemented SMPC-based cryptographic protocol in real-

world IoT use cases, and how do they compare with

existing security solutions in terms of computation time,

resource utilization, and power consumption?

D. Structure

Section II provides an overview of what is presented in the

literature regarding the usage of SMPC to enhance privacy and

security in IoT applications. Then section III documents the

hardware and software configurations, implemented PHE

schemes, and research metrics. The section concludes with an

in-depth review of the testing environment and design choices.

Next, section IV details the performance- and security analysis

of the implemented PHE schemes. The performance analysis

delves into computation time, power consumption, and

memory usage, whilst the security analysis examines the

security model, cryptographic key size and semantic security.

Additionally, RQ1 and RQ2 are answered at the end of the

section. The paper concludes with section V, which

summarizes key findings and outlines potential avenues for

future research.

II. RELATED WORK

The field of SMPC has been rapidly evolving over the years

and many efficient protocols have been published. With the rise

of more efficient protocols, the application of SMPC in IoT is

also becoming more relevant. A study by authors in [11] offers

two optimized SMPC protocols for the Internet-like setting.

Their protocols are based on multiparty garbled circuits as

described in the paper of Beaver, Micali and Rogaway[12].

Furthermore, they provide a protocol based on the paper from

Ben-Or, Goldwasser and Widgerson[13] that incorporates the

free-XOR technique as well as reducing round complexity.

With these optimizations they reduced overall runtime from

355 seconds to 25 and the online time from 330 seconds to <0.5

seconds compared to the 1987 paper from Goldreich, Micali

and Widgerson[13]. Another paper by authors in [15] looks at

optimizing Shamir-Secret Sharing[16] (SSS) to achieve

privacy-preserving data aggregation in the IoT environment.

They optimized the sharing phase of SSS by lowering the

degree of the polynomial. With this optimization, they managed

to make their aggregation time 6 and 9 times faster as well as

using 7 and 10 times less radio-on time in their testing

environments (Flocklab and DCube respectively). Cloud

computing has a lot of potential for SMPC in the IoT setting.

Authors in [10] discussed the possibility of using the cloud to

utilize Homomorphic encryption in the IoT environment. In

their architecture, the IoT device encrypts their data and sends

it to a cloud. Then a 'data user' can query for the data, which is

then computed by the cloud and delivered. They concluded that

resource-constrained IoT devices might not be able to afford

the costs of Fully Homomorphic encryption. However, they did

find that Partial Homomorphic encryption has great potential

for resource-constrained IoT devices. The cloud can be used by

IoT devices to offload their complex computations. Authors in

[17] proposed a protocol based on a modified SSS[16] scheme

where the source node can outsource its computation to a set of

workers. The paper showed that the proposed protocol met the

requirements of full anonymity, confidentiality, verification,

and computation synchronization while also shifting most of

the computational costs to the workers, ensuring correct results.

These papers show that SMPC has great potential to be used in

the IoT environment.

III. METHODOLOGY

This section details the methodology employed in the

research. It begins with a description of the hardware and

software setup, providing the foundation for algorithm

implementation. Then, the research metrics are presented,

followed by an outline of the chosen PHE schemes. The section

concludes with insights into the practical implementation and

testing environments used in the research.

A. Hardware and software setup

1) Tools: The hardware configuration includes an Arduino

Uno with an ATmega328 microcontroller (32K bytes of

flash memory), a MacBook Air powered by a 1.3 GHz Dual-

Core Intel Core i5 CPU (121 GB flash memory), and an

AVHzY USB-Meter C3 designed for power consumption

measurement. The software environments comprise of the

International Conference on Intelligent Systems and New Applications (ICISNA'24)

66

Arduino IDE 2.2.1, utilizing C/C++ and the microRSA and

arduino-cryptographic-library libraries. Pycharm CE 2021.3

supports Python 3.11, integrating libraries such as OpenSSL

and python-paillier.

B. Algorithms

This paper focuses on implementing two PHE encryption

schemes to cover both mathematical operations. RSA for its

multiplicative property and the Paillier cryptosystem for its

additive property.

1) RSA: RSA is a public-key cryptosystem that relies

on the practical difficulty of integer factorization[21]

specifically for the product of two large prime numbers.

RSA encryption is described by the following equation:

𝐸(𝑚) = 𝑚𝑒 𝑚𝑜𝑑 𝑛 (1)

In this equation, m represents the plaintext message, e is m.

the public exponent, and n is the product of two large prime

numbers, ensuring the security of the encryption scheme.

The multiplicative homomorphic property of RSA is

described by the equation:

𝐸(𝑚1) ∗ 𝐸(𝑚2) = 𝑚1
𝑒𝑚2

𝑒 𝑚𝑜𝑑 𝑛
 = (𝑚1 ∗ 𝑚2)𝑒 𝑚𝑜𝑑 𝑛

 = 𝐸(𝑚1) ∗ 𝐸(𝑚2)

This property highlights the ability to perform multiplication

on the cyphertexts directly without the need for decryption.

2) Paillier cryptosystem: The Paillier cryptosystem

is a probabilistic public-key encryption scheme based on a

discrete logarithm trapdoor modulo a large integer that is

hard to factor[22]. Paillier encryption is described by the

following equation:

𝐸(𝑚) = 𝑔𝑚𝑟𝑛 𝑚𝑜𝑑 𝑛2 (2)

In this equation, m represents the plaintext message, g is a

generator of the multiplicative group modulo 𝑛2, and r is a

random value chosen from the set {0,...,n-1}. The Paillier

cryptosystem exhibits an additive homomorphic property,

described by the equation:

𝐸(𝑚1) ∗ 𝐸(𝑚2) = (𝑔𝑚1𝑟1
𝑛)(𝑔𝑚2𝑟2

𝑛) 𝑚𝑜𝑑 𝑛2
 = (𝑔𝑚1+𝑚2)(𝑟1𝑟2)𝑛 𝑚𝑜𝑑 𝑛2

 = 𝐸(𝑚1) + 𝐸(𝑚2)

This property enables the computation of the encryption of

the sum of corresponding cyphertexts directly.

C. Research metrics

This research benchmarks implemented protocols based on

performance and security metrics. Performance evaluation

includes memory usage, power consumption, and computation

time measured in bytes, volts, milliwatts, milliamperes, and

milliseconds respectively. Security assessment focuses on

analyzing security models, cryptographic key sizes, and

semantic security to ensure robustness against adversarial

behavior and encryption security.

D. Implementation

The laptop and Arduino Uno are connected via USB for

Serial port communication, facilitating reliable data exchange.

The laptop handles key generation tasks with a 1024-bit key

size, using the Python subprocess library and OpenSSL for

RSA operations and the python-paillier[20] library for Paillier

encryption. The Arduino Uno employs a custom 'bignum8'

structure for numbers up to 512 bytes in Paillier encryption.

Implementation on the Arduino includes the RNG library for

secure random number generation, modular arithmetic, and

modular exponentiation to enhance computational efficiency

for a robust and secure cryptographic system.

1) RSA environments: For RSA encryption two different

environments interact with each other, the Python- and

Arduino environments. The Python environment generates

a 1024-bit RSA key pair in PEM format by utilizing

OpenSSL. Then the modulus n (Formula 2) is extracted

from the public key and sent to the Arduino to be used in

encryption. After the encryption is finished, the script

receives the cyphertext from the Arduino and can calculate

the final result by multiplying the two cyphertexts. Finally,

the resulting cyphertext can be decrypted to check the

correctness of the computation.

The Arduino environment utilizes a modified version of

the microRSA library to ensure compatibility with an IoT

environment. The Arduino receives the modulus from the

laptop and encrypts its plaintext message. The following

cyphertext is then sent to the laptop for further calculations.

2) Paillier environments: The Paillier encryption uses the

same environment structure as the RSA encryption. The

Python environment generates a 1024-bit Paillier key pair

using the python-paillier library. The script then extracts the

modulus n and squared modulus 𝑛2 (Formula 2) After

extraction, the two values are sent over the serial connection.

From here the same steps apply as in the RSA environment.

The script waits for the encrypted Arduino message,

computes the sum, and decrypts the final result.

The Arduino environment uses an extended version of

the microRSA library to implement the missing

mathematical operations. Once the Arduino receives n and

𝑛2 it can start encrypting its plaintext message. Finally, the

Arduino sends the cyphertext back to the laptop.

IV. RESULTS

This section includes an examination of the SMPC protocols,

shedding light on the performance and security aspects of the

PHE schemes. With a primary focus on RSA and the Paillier

cryptosystem, this section delves into the computation time,

power consumption, and memory usage analyses. The

performance analysis is followed by a security analysis which

goes into the security model, cryptographic key size and

semantic security. Finally, the section concludes with

answering the research questions posed in the introduction.

International Conference on Intelligent Systems and New Applications (ICISNA'24)

67

A. Performance Analysis

1) Computation time: This section explores the

computation time of cryptographic operations, providing a

comprehensive perspective on minimum, maximum, and

average runtimes based on 100 sampled instances. Table 3

presents the runtime analysis of the SMPC protocol

utilizing RSA, covering key generation (Keygen), Python

message encryption (EncryptP), laptop decryption

(Decrypt), and Arduino message encryption (EncryptA).

Notably, the overall protocol runtime is significantly

influenced by the Arduino's encryption time, averaging

1807ms, approximately 100 times slower than its Python

counterpart. Key generation shows notable variability in

both minimum and maximum times, but its infrequency is

unlikely to significantly impact the overall protocol

performance.

TABLE 1: COMPUTATION TIME RSA

RSA Min Average Max

Keygen 191ms 256ms 578ms

EncryptA 1792ms 1807ms 1834ms

EncryptP 12ms 17ms 32ms

Decrypt 13ms 19ms 29ms

Total 2008ms 2099ms 2473ms

Table 4 provides a comprehensive breakdown of the

computation time for the Paillier-based SMPC protocol on

the laptop. Key generation (Keygen), encryption of Python

messages (Encrypt), and decryption (Decrypt) are the key

components analyzed. Key generation, similar to the RSA

protocol, displays notable variability in both minimum and

maximum times, but, as mentioned earlier, this variability

is not expected to significantly impact the overall

performance of the protocol due to the infrequency of key

generation.

TABLE 2: COMPUTATION TIME PAILLIER PYTHON

Paillier

Python

 Min Average Max

Keygen 108ms 356ms 1054ms

Encrypt 24ms 32ms 51ms

Decrypt 7ms 10ms 24ms

Total 139ms 398ms 1129ms

TABLE 3: COMPUTATION TIME ARDUINO MODULO

Modulo in

bytes

 128 256 512

128 1ms 922ms 2766ms

256 0ms 2ms 3668ms

TABLE 4: COMPUTATION TIME ARDUINO MULTIPLICATION

Multiply in

bytes

 64 128 256

64 25ms 46ms 92ms

128 46ms 99ms 183ms

256 92ms 183ms 367ms

Due to memory issues, the Paillier encryption on the

Arduino faced constraints, impeding the acquisition of

runtime data. An estimate, based on the computational

demands of the most intensive task, modular

exponentiation involving 256- and 512-byte numbers, can

be derived. With 1024 cycles and additional executions,

the modular exponentiation step comprises a combined

1536 multiplications and modulo operations. Using data

from Tables 5 and 6, the estimate suggests a total runtime

of approximately 103.3 minutes for the function.

2) Power consumption: The power analysis, outlined in

Tables 7 and 8, sheds light on the energy demands of

cryptographic algorithms implemented on the Arduino Uno.

At 5.1 volts, the Arduino exhibited an average amperage of

19.0mA when idle. During cryptographic operations (RSA,

Multiply, and Modulate), the amperage only slightly

increased to an average of 20.4mA, peaking at 21.2mA

during modulation. These values remain well below the

Arduino Uno's maximum power draw capacity of at least

200.0mA[23]. The correlation between recorded amperage

and wattage, validated through Ohm's Law (W = V * I),

underscores the consistency of data across cryptographic

functions. Consequently, the power consumption of these

PHE schemes on the Arduino Uno is deemed negligible,

indicating that power constraints should not pose significant

challenges in implementing or discussing these

cryptographic algorithms on the Arduino platform.

TABLE 5: AMPERE USAGE ARDUINO

TABLE 6: WATTAGE ARDUINO

Function Min Average Max

RSA 102.9mW 103.8mW 105.8mW

Multiply 104.9mW 106.3mW 110.2mW

Modulate 103.7mW 104.2mW 106.2mW

3) Memory Usage: In the evaluation of memory usage for

the RSA and Paillier implementations on the Arduino,

Table 9 provides a comprehensive overview of Flash and

dynamic memory consumption before runtime. Both

implementations stay well below the maximum thresholds

of 32K and 2K respectively, with the RSA utilizing 6076

bytes of Flash and 330 bytes of dynamic memory, while the

Paillier implementation uses 10176 bytes of Flash and 493

bytes of dynamic memory. Since the Arduino IDE does not

support real-time memory analysis, the subsequent

calculations are estimates based on line-by-line code

analysis.

TABLE 7: MEMORY BEFORE RUNTIME IN BYTES

Memory type Flash Dynamic

Function Min Average Max

RSA 20.1mA 20.4mA 20.8mA

Multiply 20.2mA 20.3mA 20.5mA

Modulate 20.1mA 20.4mA 21.2mA

International Conference on Intelligent Systems and New Applications (ICISNA'24)

68

RSA 6076 330

Paillier 10176 493

To gain insights into the dynamic memory usage during

runtime, the memory flow over specific events is depicted in

Figures 2 and 3. For the RSA implementation (Figure 1), the

memory usage grows during key generation, message

generation, and conversion to the custom bignum8 structure.

The encryption phase introduces two temporary variables,

reaching an estimated highest memory usage of 1226 bytes.

The RSA implementation does not encounter memory issues.

The Paillier encryption on the other hand (Figure 2) involves

higher memory demands due to the reception of two large

variables, n (128 bytes) and𝑛2(256 bytes). Additionally, during

modular exponentiation, the memory usage variable of r peaks

at 512 bytes. The estimated highest memory usage for the

Paillier implementation is 1773 bytes, occurring during the

modular exponentiation and the final cyphertext calculation.

Despite these estimates not reaching or exceeding the Arduino's

maximum memory capacity of 2048 bytes, the Paillier

implementation experiences program breakdowns and outputs

zero values, indicating potential memory-related issues.

Figure 1: Estimated memory usage RSA

Figure 2: Estimated memory usage Paillier

B. Security analysis

1) Security model: The security of a protocol is

meaningful only when discussed under a specific security

model, as the capabilities of the adversary define the security

requirements. This paper assumes a Semi-honest Adversary

Model as the security model during the execution of the

protocol. In this model, corrupted parties must execute the

protocol correctly. The adversary can obtain information on

corrupted parties but will attempt to use this information

discreetly. Protocols that achieve this level of security prevent

the leakage of information between collaborating parties.

2) Key size: NIST revised its recommendation for RSA

key lengths in 2015, now advising a minimum of 2048

bits[24]. This update supersedes the consensus which

advocated for a minimum key size of 1024 bits. Consequently,

the use of a 1024-bit key in encryption is discouraged for

safeguarding sensitive or critical data. However, if the key's

lifespan or the protected data spans only days or weeks, the

necessity for employing a key resistant to years-long attacks

diminishes. The choice of key size and its associated security

considerations in the context of the IoT environment would

be contingent on specific usage. It's noteworthy that 1024-bit

keys represent the upper limit of what an Arduino Uno,

without additional memory extensions, can effectively

manage.

3) Semantic security: The intrinsic homomorphic

property of RSA makes the algorithm susceptible to semantic

insecurity in the absence of proper padding. The lack of

semantic security renders the encryption vulnerable to

potential attacks such as Chosen Plaintext and Message

Replay. The introduction of padding however destroys the

homomorphic property, making performing SMPC

impossible. The Paillier cryptosystem does offer semantic

security against chosen-plaintext attacks. The successful

distinction of the challenge cyphertext boils down to the

ability to make decisions about composite residuosity, a task

considered computationally intractable under the assumption

of decisional composite residuosity. However, despite

providing semantic security against chosen-plaintext attacks,

the system exhibits malleability due to its homomorphic

properties. Thus, it does not achieve the highest level of

semantic security, lacking protection against adaptive

chosen-cyphertext attacks.

C. Answering RQ1

A customized SMPC protocol based on PHE schemes can

ensure the confidentiality and integrity of data through the

homomorphic properties of the algorithms. PHE schemes are

the least computationally complex type of HE and are therefore

a logical consideration for the resource-constrained IoT

environment. With these homomorphic properties, one can

compute results based on cyphertexts rather than on plaintext.

This ensures that the context of the numbers is lost and the

parties involved do not learn any information about the other

participating parties. This protocol can be further extended by

implementing secret-sharing techniques like SSS or Oblivious

Transfer when distributing keys or cyphertexts.

D. Answering RQ2

The practicality of implementing the RSA and Paillier PHE

schemes on a resource-constrained device is rather lacking, as

efficiency and security perform insufficiently for the IoT

International Conference on Intelligent Systems and New Applications (ICISNA'24)

69

environment. For the RSA algorithm, encryption takes on

average 1807ms which is too long for the often real-time data

needed in the IoT environment. Furthermore, the RSA

algorithm cannot make use of padding which makes it

semantically insecure. This results in the fact that parties can

gain knowledge about other participating parties, which goes

against SMPC requirements. The Paillier encryption on the

other hand is semantically secure but cannot finish encryption

due to running out of dynamic memory. Even if the Paillier

algorithm could finish an encryption, this would take at least

103,3 minutes. Again, this is way too long for any practical

application in the IoT environment. The security status of the

chosen 1024-bit key size is contingent on the usage of the

protocol, therefore no concrete conclusion can be made

regarding key size other than the fact that the protocols should

not be used to store critical data. Power consumption is the only

characteristic that both algorithms perform sufficiently.

However, this does not weigh up against the lack of

computational efficiency and security.

V. CONCLUSIONS

Privacy and security are pivotal in data-sharing within the

IoT environment. Despite this, there is a noticeable gap in the

literature regarding the practical implementation of SMPC

protocols on resource-constrained devices within the IoT [25].

This research details the implementation of two PHE-based

SMPC protocols on the resource-constrained Arduino Uno.

One protocol is built upon the RSA cryptosystem, and the other

is based on the Paillier cryptosystem. The protocols underwent

benchmarking and security analysis. For the performance,

metrics important to resource-constrained devices such as

memory usage, power consumption, and computation time

were tested [26]. Whereas the security analysis delves into the

security model, semantic security, and cryptographic key size.

Based on the results of this research I conclude that SMPC

shows great potential for the resource-constrained IoT

environment. However, it is not practical to directly implement

Partially Homomorphic Encryption schemes on a resource-

constrained device like the Arduino Uno with the goal of SMPC.

I would discourage attempts to optimize RSA and Paillier

encryption on the Arduino and instead focus on offloading

complex computations and encryptions through the use of

cloud computing and secure data offloading. With these

techniques, one could utilize even more robust encryption

algorithms more efficiently than the Arduino can.

REFERENCES

[1] Adam Thierer and Andrea Castillo. Projecting the growth and economic

impact of the internet of things. George Mason University, Mercatus Center,

June, 15, 2015.
[2] Lo’ai Tawalbeh, Fadi Muheidat, Mais Tawalbeh, and Muhannad

Quwaider. Iot privacy and security: Challenges and solutions. Applied

Sciences, 10(12), 2020.
[3] Asma Haroon, Munam Ali Shah, Yousra Asim, Wajeeha Naeem,

Muhammad Kamran, and Qaisar Javaid. Constraints in the iot: the world in

2020 and beyond. International Journal of Advanced Computer Science and

Applications, 7(11), 2016.
[4] Elhajj, M., Jradi, H., Chamoun, M. and Fadlallah, A., 2022, June. Lasii:

Lightweight authentication scheme using iota in iot platforms. In 2022 20th

Mediterranean Communication and Computer Networking Conference

(MedComNet) (pp. 74-83). IEEE.

[5] Marcel von Maltitz and Georg Carle. Leveraging secure multiparty

computation in the internet of things. In Proceedings of the 16th Annual

International Conference on Mobile Systems, Applications, and Services,

MobiSys ’18, page 508–510, New York, NY, USA, 2018. Association for

Computing Machinery.
[6] Saurabh Singh, Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk

Park. Advanced lightweight encryption algorithms for iot devices: survey,

challenges and solutions. Journal of Ambient Intelligence and Humanized

Computing, pages 1–18, 2017.
[7] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-

Zhi Gao, Hongwei Li, and Yu an Tan. Secure multi-party computation:

Theory, practice and applications. Information Sciences, 476:357–372, 2019.
[8] Andrew C. Yao. Protocols for secure computations. In 23rd Annual

Symposium on Foundations of Computer Science (sfcs 1982), pages 160–

164, 1982.
[9] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986), pages

162–167, 1986.
[10] Wang Ren, Xin Tong, Jing Du, Na Wang, Shan Cang Li, Geyong Min,

Zhiwei Zhao, and Ali Kashif Bashir. Privacy-preserving using homomorphic

encryption in mobile iot systems. Computer Communications, 165:105–111,

2021.
[11] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-

honest secure multiparty computation for the internet. Cryptology ePrint

Archive, Paper 2016/1066, 2016. https://eprint.iacr.org/2016/1066.
[12] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round

complexity of secure protocols. In Symposium on the Theory of Computing,

1990.
[13] E. W. van der Wal and M. El-Hajj, "Securing Networks of IoT Devices

With Digital Twins and Automated Adversary Emulation," 2022 26th

International Computer Science and Engineering Conference (ICSEC), Sakon

Nakhon, Thailand, 2022, pp. 241-246.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental

game. In Proceedings of the Nineteenth Annual ACM Symposium on

Theory of Computing, STOC ’87, page 218–229, New York, NY, USA,

1987. Association for Computing Machinery.
[15] Himanshu Goyal and Sudipta Saha. Multi-party computation in iot for

privacy-preservation. In 2022 IEEE 42nd International Conference on

Distributed Computing Systems (ICDCS), pages 1280–1281, 2022.
[16] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,

nov 1979.
[17] Oladayo Olufemi Olakanmi and Kehinde Oluwasesan Odeyemi. Trust-

aware and incentive-based offloading scheme for secure multi-party

computation in internet of things. Internet of Things, 19:100527, 2022.
[18] qqqlab. microrsa. https://github.com/qqqlab/microRSA, 2020.
[19] Rhys Weatherley. Arduino cryptography library.

https://rweather.github.io/arduinolibs/crypto.html, 2023.
[20] CSIRO’s Data61. Python paillier library.

https://github.com/data61/python-paillier, 2013.
[21] Kefa Rabah. Review of methods for integer factorization applied to

cryptography. Journal of applied Sciences, 6(1):458–481, 2006.
[22] Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong

Q. Nguyen. Paillier’s cryptosystem revisited. In Proceedings of the 8th ACM

Conference on Computer and Communications Security, CCS ’01, page

206–214, New York, NY,USA, 2001. Association for Computing Machinery.
[23] Microchip. megaavr® data sheet. https://ww1.microchip.com/downloads

/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-

DS40002061B.pdf,2019.
[24] Elaine Barker and Quynh Dang. Recommendation for key management

part 3:Application-specific key management guidance, 2015-01-22 2015.

[25] El-Hajj, M., Fadlallah, A., Chamoun, M., & Serhrouchni, A. (2020,

January). Secure PUF: Physically unclonable function based on arbiter with

enhanced resistance against machine learning (ML) attacks. In SEIA’2019

Conference Proceedings, Lulu. com (p. 216).

[26] Fneish, Zein Al-Abidin Mohammad, Mohammad El-Hajj, and Khouloud

Samrouth. "Survey on iot multi-factor authentication protocols: A systematic

literature review." In 2023 11th International Symposium on Digital Forensics

and Security (ISDFS), pp. 1-7. IEEE, 2023

