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Abstract—Hanoi is the biggest economic centre in Northern 
Vietnam with a population of nearly 10 million people. Its power 
supply system is supported and developed by the government, as 
part of the country's electrical distribution system. Because of this, 
forecasting Hanoi's electricity load is vital to improving the 
citizens' lives, especially when the power supply of Northern 
Vietnam is barely enough. In this research, we are proposing a 
new model that uses Wavelets along with Deep learning, with 
Adam as optimization in order to replace outdated manual 
statistical methods. Our model shows higher accuracy (best case is 
higher than 1.22%) when compared to the traditional methods of 
GRU and LSTM (without and with Adam optimization). 

 
Keywords—Time series forecasting, GRU, LSTM, Wavelets, 
Adam. 

I. INTRODUCTION 

Electricity load of an area is an important factor as it directly 
affects the economy of that community. Power coordination, 
which is based on electricity load, poses as an urgent issue for 
the power generation industry and government. 

In Vietnam, electricity load prediction is still operated on 
experience and uses traditional statistical tools. This has led to 
major errors in its operating system. That's why it's crucial that 
we come up with updated methods using machine learning in 
order to achieve higher accuracy, especially for short-term 
power load forecasting.  

In this research, the authors brought out a deep learning 
method combined with pre-processing data using wavelets and 
Adam optimization. Our model had high accuracy and can be 
used alongside traditional methods to predict the electricity 
load with the highest possible accuracy rate. 

II. RELATED WORKS 

Neural Network methods have been used in past research for 
short-term time series forecasting. Some of these models have 
long running times and use complex algorithms only to produce 
modest results.  

In 2018, Peng et al [1] worked on a way to predict electricity 
consumption changes, inspired by past works in the same field. 
Using LSTM, they garnered fairly high results in real-life test 

runs with error percentages of 4.01%, 5.37%, and 1.60%. An 
article written and published in 2018 by Chang et al [2] 
combined LSTM with Adam optimization with the goal to 
predict fluctuations in electricity prices. Experimenting on data 
from 2014 in New South Wales of Australia, their method had 
the highest MAPE rate of 6.61% in August.  

In 2020, El-Hendawi et al [3] came up with a method of 
forecasting electricity load with very high accuracy. They 
achieved an error rate of 0.0191 when using Neural Network 
combined with MAPE, and an average error rate of 0.015 using 
the proposed wavelet neural network alongside MAPE. 

In September 2021, Salleh et al [4] suggested a way of 
identifying abnormal points of progression in electricity 
consumption using LSTM along with several optimization 
techniques. Their model had the most successful results 
achieving error rates of 0.09 and 0.018 respectively for MSE 
and MAE when using the Adadelta optimizer. 

Also in this year, Majeed et al [5] used Artificial Neural 
Networks merged with MAPE to predict the electricity load 
after 24, 48 and 72 hours with an error percentage of 1.87%, 
1.98% and 1.78%. 

In 2022, Kondaiah et al [6] suggested a way to predict short-
term electricity load with a Novel Wavelet-Based Ensemble 
method. This method is tested with data from Ontario, Canada 
and had the highest MAPE rate of 1.911% in spring and 
summer. 

III. METHODOLOGY 

A. Wavelet analysis - WA 

Wavelet Analysis is a powerful algorithm invented by Mallat 
that turns original detected the signals into non-noising ones. 
This method has been a crucial tool in demonstrating time 
frequency in time series domains. High-range filters generate 
detailed coefficients while approximation sequences are 
generated by low-pass filters. Wavelet transformation is 
divided into 3 separate classes of continuous, discrete, and 
multi-resolution based. Our research applies DWT (discrete 
wavelet transform) and uses wavelet theory, as shown in this 
equation below: 
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2m s here represents the scaling parameter 2m n , 
which is the DWT translation parameter, calculates the degree 

of confinement. When  1s , this means the wavelet signal 

has reached out from its root signal while  0 1s  means the 

original wavelet signal has been squeezed down from the 
original. 

 
Fig. 1 shows the input data of first-order wavelet being split 

into two components of low-frequency and high-frequency. n
is number of values in the original input time series.  

 

Fig. 1. Wavelet analysis 

With 
1

A a 2nd-order wavelet is used to split the low-

frequency 
2

D  and the high-frequency 
2

A . As a result, we get 

the time series (
1 2
, , .., ,

N N
D D D A ). The high-frequency 

component 
N

A  is noisy and can be deleted after some splitting. 

The number N  - Wavelet degrees can now be determined 
using an algorithm from [7]: 

 lg( )N n  (2) 

B. Long-short term memory - LSTM 

As mentioned above, RNNs show good performance with 
short-term dependencies in data series but are weak when 
dealing with longer ones. In 1997, Schmidhuber [[8] proposed 
the LSTM model, which is an updated version of RNN and has 
the ability to confront its existing problems [9], [10]. In fact, to 
store information during the training period, LSTM has been 
designed with 3 gates and a final processing step in the cells.  

LSTM input value at t step  is 
t

x , and output at the  1t

step is 
1t

h . The input is filled by gates (with sigmoid function) 

and the output value is in range [0,1]. If the output is 0, all 

inputs are erased. If not, the data stays the same. Then, the 

output at 
t

h  and the cell state at t  are determined by this 

process shown below: 
Step 1: Forget gates remove data from the state's cell: 


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Step 2: New data is kept in the cell state. In the first phase, the 
input gate (with the function sigmoid ) updates the node with 

new values. During the second phase, t anh class uses a new 

vector 
t

c : 
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Step 3: State cells are updated from 
1t

C  to 
t

C : 
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Step 4: Calculating the output. Initially, the data outside of 
the LSTM unit are examined by the output gate evaluates. Then, 
state becomes a passed node that ranges from -1 to 1. The final 
output is then found through this formula: 
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V are the LSTM parameter, and 


, ,
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bias bias bias , 

0
bias are LSTM model's biases). 

C. Gated recurrent unit (GRU) 

Kyung Hyun Cho et al., October 2014 [11] and J. Chung et al., 
2015 [12] proposed gated recurrent unit (GRU), a simplified 
version of LSTM. Similar to LSTM, this model has some gate 
functionalities and can be widely applied. However, it doesn’t 
have a memory cell. GRU functions can be summarized in 
these formulas: 
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where 
t

h  and 
t

z  are the GRU outputs, 
t

r  is the update and 

reset gate, 
t

h  :candidate output; , ,
z h r

V V V  and 
r

U  are the 

GRU matrices. 

D. Adam-optimization 

Algorithm 1 ADAM-optimization 
1: Input n : Stepsize 

2: Input  
1 2
, : Exponential decay rates for temporary 

estimation 
3: Input ( )f : Stochastic objective function parameters   

4: Input 
0

: Initial parameter vector 

5: 
0

: 0;m  

6: 
0

: 0;v  

7: : 0;i  

8: while 
t
 not converged do 

9:  : 1i i  

10: 





 
1

: ( )
i i i

g f  
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16: end while 

17: return 
i
 

This is the pseudo-code of our proposed algorithm A dam  [13]. 
Consider ( )f  a noisy objective function: a stochastic scalar 

function of differentiable w. .r t  parameters  . We aim to 

minimize the expected value of this function,   ( )E f  w. .r t  

its parameters  . We denote the realizations of the stochastic 

function at subsequent time stamps 1, ..,T  with  
1
( ), .., ( )

T
f f . 

The stochasticity might come from the evaluation of random 
datapoint mini samples, or arise from inherent function noise. 

With 


  ( )
t t

g f  the gradient is denoted, i.e. vector of partial 

derivatives of , . .
t

f w r t  evaluated at timestep t . 

E. Proposed model: WA-NN-Adam 

In our proposed model, the original data is firstly filtered by 
WA (Wavelet Analysis). The noisy part of the input dataset is 
deleted, which leaves behind smooth data that can be used in 
machine learning. LSTM and GRU models are then used. They 
both run with 8, 16, 32, 64, 128 hidden layers with a batch size 
of 100 and epoch of 10. The learning rate is set at 0.01. Adam 
is then used as an optimization method. Each model runs 10 
times with each set of parameters. The end result is the average 
value of all machine runs. 

 

Fig. 2. Proposed flowchart 

IV. EXPERIMENT AND RESULTS 

A. Data 

Our electrical load data is taken from a large urban area (all 
residential) in Northern Vietnam. The figures are taken from 
January 1, 2015 to August 30, 2019. The values of this datasets 
taken at 8 PM every day. 

By running this dataset, we can generate indicators to 
forecast power consumption at peak times as well as off-peak 
times. 

B. Criteria for comparison (Accuracy) 

2 criteria are used in order to com pare the results: Root 
Mean Squared Error and Mean Absolute Percentage Error 
(RMSE and MAPE): 
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C. Results 

The table below gives information on the result of the model 
after applying our actual data. 

TABLE 1 

RESULTS OF DATA. 

Models 
Compare 

RMSE MAPE 
GRU 741 1.12% 

LSTM 744 1.13% 
GRU-Adam 690 1.04% 

LSTM-Adam 656 1.01% 
WA-GRU-Adam 619 0.98% 

WA-LSTM-Adam 614 0.97% 

 

 

Fig. 3: Result of GRU model. This is the first 30 values 

 

Fig. 4: Result of LSTM model. This is the first 30 values 
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Fig. 5: Result of GRU-Adam model. This is the first 30 values 

 

Fig. 6: Result of LSTM-Adam model. This is the first 30 values 

 

Fig. 7: Result of WA-GRU-Adam model. This is the first 30 values 

 

Fig. 8: Result of WA-LSTM-Adam model. This is the first 30 values 

The Tab. 1 shows the results of the model after applying data 
of electricity load in Hanoi, biggest city in north Vietnam. 

Each combination model's outcomes are better than those of 
the individual models, as illustrated in the table. The basic 
LSTM model using RMSE is the highest at 744, followed by 
GRU, which has an RMSE of 741 and a remarkably high 
MAPE of 1.12%, a sign of inaccuracy. (Aside from GRU and 
LSTM, the GRU-Adam model performs third worst in all 
criteria, with the exception of MAPE. However, this model's 
MAPE was higher than that of the hybrid LSTM-Adam model 
because the MAPE criteria are based on a relative error. The 
difference between 0.34 and 0.03 is comparatively 
insignificant).  

 

The RMSE and MAPE differences between GRU-Adam and 
the LSTM-Adam model are just 0.34% RMSE and 0.03% 
MAPE, respectively. The suggested WA-GRU-Adam and WA-
LSTM-Adam models had the lowest RMSE and MAPE values, 
with a 19.71% lower RMSE and a 14.3% better MAPE for 
GRU and 21.17% lower RMSE and a 16.5% better MAPE for 
LSTM than its hybrid adversary. 

V. CONCLUSION AND FUTURE WORK 

In this research, we have suggested some methods which use 
the core as a machine learning structure (Neural Network), 
combined with pre-processing and optimization tools. These 
combinations helped minimized weaknesses of the traditional 
methods, thereby increasing the accuracy of the final model. 
For this reason, our model of WA - Neural Network - Adam 
achieved higher accuracy rates compared to the traditional 
structures of LSTM and GRU. 

We hope to improve our current machine learning method 
for future works, in order to achieve even higher accuracy rates. 
Some improvement directions can be considered below: 

 Multi-time series for input data. 
 More complicated hybrid models with more 

components. 
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