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Abstract— In this study, the gear fault classification problem,
which is of critical importance in industrial mechanical systems,
was investigated within the scope of five deep learning models
including ResNetl8, ResNet34, ResNet50, DenseNetl121 and
EfficientNet-B0 architectures widely used in the literature. Models
were trained on the multi-class gear fault image dataset and their
accuracy performances were compared with their numerical
values. According to the results, ResNet18 achieved the highest
accuracy value with 0.9615, while EfficientNet-BO showed a
similarly strong performance with 0.9594. ResNet34 ranked third
with an accuracy value of 0.9541, demonstrating that lightweight
ResNet architectures offer high generalization ability in gear fault
detection. On the other hand, deeper architectures, ResNet50 with
0.7511 accuracy and DenseNet121 with 0.7500 accuracy, did not
provide a significant increase in accuracy despite increasing
structural complexity and showed limited performance against
the characteristics of the data set. These findings reveal that
representation efficiency rather than model depth is the
determining factor in gear fault classification problems, and that
ResNet18 and EfficientNet-B0 architectures are the most suitable
options for real-time fault detection systems.

Keywords— Gear Fault Classification, Convolutional Neural
Networks (CNN), ResNet, DenseNet, EfficientNet-B0
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Gear mechanisms play a critical role in power transmission
systems requiring high reliability, such as automotive,
aerospace, wind energy, industrial robotics, and production
lines. They are frequently used in industrial applications due to
their high torque transmission, precise speed control, and high
energy efficiency in automotive, aerospace, wind turbines,
robotics, and production lines. Faults such as pitting, broken
teeth, wear, surface fatigue, and misalignment in these systems
directly affect vibration characteristics, reducing system
performance and leading to unexpected shutdowns. Early
detection of these faults is critical for maintenance strategies.

INTRODUCTION
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While classical signal processing methods (STFT, WPT, EMD,
etc.) have been used for many years to analyze gear vibration
signals, the complexity of nonlinear, noisy, and load-sensitive
gear vibration signals limits their effectiveness. Therefore, deep
learning-based fault diagnosis algorithms have become
increasingly prevalent in the literature in recent years due to
their automatic feature extraction and high generalization
capabilities [1].

With the transition to intelligent maintenance systems in
machinery equipment, deep learning-based methods capable of
automatic feature extraction are playing a significant role in
industrial fault detection. Convolutional Neural Network (CNN)
architectures have demonstrated significant success,
particularly in extracting highly representative features from
complex vibration data. In a comprehensive study evaluating
the performance of deep learning in rotating machinery
diagnosis, Qiu, et al. [2] demonstrated that CNN models
eliminate the need for manual feature extraction and offer high
generalization capabilities. Zhao, et al. [3] reported that their
CNN and transfer learning-based approach achieved high
accuracy for faults such as gear pitting and broken teeth.

With these developments, understanding the differences
between the performance of different CNN architectures in gear
fault diagnosis has become increasingly important. Residual
Network (ResNet) architectures, in particular, have eliminated
the vanishing gradient problem encountered in deep networks
thanks to the "skip connection" structure introduced by He, et
al. [4] in 2016. While shallower models such as ResNet18 and
ResNet34 address real-time applications with lower
computational costs, ResNet50, with its deeper layer structure,
offers greater capacity to learn complex fault signatures.
Various experimental studies have demonstrated that ResNet
architectures provide high accuracy in diagnosing bearing and
gear faults [5].
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Another powerful architecture, DenseNetl21, maximizes
information flow within the network by forwarding information
from each layer to all subsequent layers using a dense
connectivity strategy. Huang, et al. [6] have shown that this
architecture requires fewer parameters and strengthens gradient
flow. These features improve accuracy by preventing the loss
of small fault signatures, especially in complex gear vibration
signals with low signal-to-noise ratios. In recent years,
DenseNet121 has become a widely used model for detecting
bearing, gear, and rotor faults [7].

EfficientNetBO is a highly parameter-efficient CNN
architecture developed using a compound scaling technique
that provides balanced scaling across depth, width, and
resolution. Cui and Zhang [8] demonstrated that the
EfficientNet family can achieve significantly higher accuracy
levels with significantly fewer parameters than traditional
CNNs. Therefore, EfficientNet stands out as a viable solution
for real-time predictive maintenance systems, embedded
hardware, and industrial IoT platforms. Recent studies have
demonstrated that EfficientNet-based models are successful in
both bearing and gear fault diagnosis [8].

While deep learning research on gear fault diagnosis is
increasing in the literature, systematic comparisons of different
CNN architectures, particularly those conducted on the same
dataset, the same processing pipeline, and the same evaluation
metrics, are quite limited. Comprehensive studies examining
the impact of depth, connectivity, and parameter scale of CNN
architectures on fault classification performance are also
lacking in the literature. In this context, the comparison of
ResNetl8, ResNet34, ResNet50, DenseNetl21, and
EfficientNetBO0 architectures fills an important research gap in
determining the most suitable model for gear fault diagnosis.

This study comprehensively compares these five
architectures to assess the ability of modern deep learning
models to distinguish gear fault types. This study contributes to
identifying the optimal architecture that offers both high
accuracy and low computational cost for practical fault
diagnosis applications.

II. MATERIAL AND METHODS

In this study, a deep learning-based approach was developed
for the automatic classification of fault types occurring in gear
mechanisms. The methodological process, as shown in Fig. 1,
was carried out within a comprehensive and systematic
framework. The image data used in the study was obtained
from the "Gear Fault Data Set," published on the Mendeley
Data platform, which includes nine different case classes
(robust and eight fault types). The raw images were subjected
to preprocessing steps such as resizing, grayscaling, random
horizontal flip, and slight rotation to improve model
performance and reduce overfitting during the training process.
In this study, widely used convolutional neural network (CNN)
architectures such as ResNetl8, ResNet34, ResNet50,
DenseNetl121, and EfficientNetBO were comparatively
evaluated. A 5-fold cross-validation strategy was applied to
ensure robust and consistent testing of the models. All models
were trained under the same training protocol, hyperparameter
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settings, and evaluation criteria (accuracy, precision, recall, and
F1-score), thus ensuring objective experimental comparisons.

Gear Fault Dataset

Image Preprocessing
& Augmentation

Comparison of The
Results
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Fig. 1. Overall Workflow of the Proposed Fault Classification Framework

A. Dataset

The dataset in fig. 2 used in this study consists of sound wave
images obtained from time-domain representation of sound
recordings of industrial gear mechanisms. The dataset contains
a total of nine classes, each representing a different type of
failure, and each class contains 104 examples. Thus, the total
dataset size is 936 images. These images visually represent the
acoustic signatures of various mechanical failures in gear
systems, such as cracks, fractures, missing teeth, spalling, and
various types of chipping [9]. The balanced structure of the
dataset across classes ensures that the models are evaluated in
a way that is free from biased learning and allows for reliable
comparison of gear fault classification performance.
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Fig. 2. Dataset examples
The image dataset used in this study was analysed for the
classification of gear defects/types. A series of preprocessing
steps were applied to the images to increase the efficiency of
the training process and strengthen the generalization ability of
the model. All images were resized to 224x224 pixels to fit the
model inputs. To reduce computational costs and highlight
structural features, the images were converted from a 3-channel
RGB format to a single-channel grayscale format. To prevent
overfitting of the model and increase the diversity of the
training data, various data augmentation techniques were
applied to the training set. In this context, images were mirrored
horizontally with a 50% probability, performing a random
horizontal flip. Furthermore, to increase spatial variation in the
images, each sample was rotated at a random angle within a
range of +5 degrees using a random rotation technique. To
ensure the stability of the training process and ensure that the
model learns a more robust representation, the images were
normalized using fixed mean [0.5, 0.5] and standard deviation
[0.5, 0.5] values, and thus pixel intensities were rescaled to the
range [-1, 1].

B. Deep Learning Architectures

In this study, five deep learning models, including ResNet18,
ResNet34, ResNet50, DenseNetl21, and EfficientNet-BO
architectures, which are widely used in the literature, were
examined. Because the dataset used in this study was grayscale
(single-channel), the standard RGB (3-channel) input layers of
all models were modified to accept a single-channel input.
Similarly, the fully connected output layers of the models were
restructured to match the number of classes in the dataset. The
weights of the models were not transferred from a pre-trained
dataset; all models were trained from scratch by initializing
them with random weights.

1) ResNetl8: ResNetl8 is a lightweight CNN architecture
that uses residual connections and was developed to address the
gradient fading problem seen in deep networks. This 18-layer
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model is known for its low computational cost and strong
generalization performance, particularly high accuracy on
small and medium-sized datasets [10].

2) ResnNet34: ResNet34 maintains the same residual
connection architecture as ResNetl8, but offers a deeper
structure (34 layers). While its capacity to learn complex
features is increased by the additional layers, its computational
cost is higher than ResNet18. Its balanced performance makes
it a popular choice for image classification tasks [11].

3) ResNet50: ResNet50 is a deeper and more powerful
version of the classic ResNet architecture, with 50 layers and
using more efficient bottleneck blocks instead of basic
convolution blocks. While it offers high representational power,
it requires more training data and computational power due to
the large number of parameters [12].

4) DenseNet121: DenseNetl21 is built on the principle of
dense connectivity, which allows each layer to be directly fed
by the outputs of all preceding layers. This approach increases
feature reuse, resulting in parameter efficiency. However, the
architecture's dense information flow can lead to excessive
complexity and longer training times on some datasets [13].

5) EfficientNet-B0: EfficientNet-B0O is an optimized CNN
architecture designed with a compound scaling strategy that
simultaneously scales model depth, width, and resolution. It
offers high accuracy with fewer parameters, making it both
lightweight and high-performance. It stands out among modern
architectures for its efficient operation, particularly in resource-
constrained environments [14].

C. Training Strategy and Hyperparameters

Model training was performed in a GPU-accelerated
environment using the PyTorch library, and all training
processes were run on an NVIDIA GeForce RTX 5090 GPU.
Common hyperparameters were used for all models in training.
Adam was selected as the optimization algorithm, the learning
rate was set to 0.001, CrossEntropyLoss was used as the loss
function, the batch size was set to 32, and the number of epochs
was set to 10. At the end of each epoch, both training and
validation losses and accuracy values were calculated to
monitor the learning dynamics of the models and evaluate
performance trends.

D. Confusion Matrix and Performance Metrics

The confusion matrix, as shown in fig. 3, shows the
distribution of correct and incorrect classifications for each
class and explains in detail which types of errors the model is
successful at and which types of errors it experiences confusion
at [15]. Values on the diagonal of the matrix represent true
positives, while values in off-diagonal cells represent the
model's misclassifications. Based on this structure, derivative
metrics such as precision, recall, and F1-score were calculated
for each class, providing a quantitative assessment of the
model's sensitivity, selectivity, and overall performance on a
class-by-class basis [16]. The use of confusion matrix is critical,
especially in multi-class gear fault classification problems, to
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distinguish between fault types and to determine which fault

categories the model needs improvement in [17].
Calculation of TP, FP, FN, TN for a Multi-Class Confusion Matrix (e.g., Class "Spalling")
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Fig. 3. Conceptual Illustration of True Positive, False Positive, False
Negative, and True Negative Regions in the 9x9 Confusion Matrix Used for
Performance Evaluation

Various performance metrics were used to objectively and
comparably evaluate the classification success of the deep
learning models used in this study. These metrics allow for a
comprehensive analysis of the models' effectiveness in gear
fault detection by quantifying their correct classification ability,
error types, and overall discrimination power [18].

Accuracy represents the proportion of examples correctly
classified by the model. It is calculated by dividing all correct
predictions by the total number of examples. It is calculated as
in Equation 1. This metric provides information about the
overall performance of the model; however, it may not be a
sufficient evaluation metric on its own in cases where the
sample distribution between classes is unbalanced [19].

TP +TN

TP+TN+ FP+FN

)

Accuracy =

Precision measures the proportion of examples predicted as

For Class: Spalling

TP=True Positive
TN=True Negative

¢

FN=False Negative

positive by the model that actually belong to the class of interest.

It is calculated as in Equation 2. This metric, which evaluates
the impact of false positive predictions, is especially important
in situations where the cost of mislabelling is high [20].

TP
TP T FP )

+ FP

Recall (sensitivity) indicates how many of the true examples
belonging to the relevant class were correctly detected by the
model. This metric, which evaluates the impact of false
negative predictions, is especially important in problems where
missing detections are critical. It is calculated by dividing the
number of true positive examples by the sum of true positive
and false negative examples, as in Equation 3 [21].

Precision =

- 3
Recall TP T FN 3)

The F1-score is the harmonic mean of the Precision and Recall
metrics, ensuring a balanced evaluation of the two metrics. If
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either the Precision or Recall value is low, the F1-score also
decreases; therefore, it reflects the overall classification success
of the models more comprehensively. It is widely used,
especially in datasets with unbalanced class distributions. It is
calculated as in Equation 4 [22].

Precision x Recall

F1 — Score = 2x “4)

Precision + Recall
E. 5-Fold Cross Validation

To reliably assess model performance, 5-fold cross-
validation was applied in the study. At each fold, the dataset
was re-divided into training and test subsets, and the model was
trained from scratch, conducting an independent learning
process. During training, the epoch within the fold that yielded
the highest validation accuracy was considered the "best
model" output for that fold, and the prediction results for that
epoch were recorded. Upon completion of the fold, accuracy,
precision, recall, and F1-score values were calculated to assess
both the fold-based performance distribution and the overall
performance trend. This approach aims to measure the model's
stability across different data splits and to eliminate the risk of
relying on a single training-test split [23].

F. Calculating Combined Results

The term "combined," used in this study, refers to a global
performance measure created by combining the predictions
obtained in the best epochs of all folds. For each fold, the
predictions and true labels from the epoch that showed the
highest validation performance were recorded separately, and
then all test samples obtained across the five folds were
combined into a single combined dataset. The overall
performance of the model was evaluated within a single
framework by recalculating the accuracy, precision, recall,
and F1-score metrics on this combined data. Unlike traditional
fold averages, the combined approach pools predictions from
the entire dataset, providing a statistically more
comprehensive and reliable measure of success [24, 25]. Thus,
it more accurately reflects the model's general generalization
ability in real-world conditions [26].

III. EXPERIMENTAL RESULTS

This study investigated the classification performance of five
popular deep learning architectures on gear photos with nine
different types of faults. Table 1 shows that the models were
tested using the Accuracy, Precision, Recall, F1-score, and total
training time metrics. The results indicate that architectural
depth and computational efficiency significantly influence
performance.



International Conference on Intelligent Systems and New Applications (ICISNA'25)

TABLE 1. PERFORMANCE RESULTS OF THE CNN MODELS IN TERMS OF
ACCURACY, PRECISION, RECALL, F1-SCORE, AND TRAINING TIME

Models  Accuracy Precision Recall sfollje ?;2:21(1;%
ResNetl8  0.9615  0.9645 0.9615 0.9616  386.16
ResNet34  0.9541  0.9555 0.9541 0.9543  393.01
ResNetS0 07511  0.8221 0.7511 0.7542 42438
DenseNet121  0.7500  0.7619 0.7500 0.7471  431.29
Efﬁc‘BegtNet' 0.9594  0.9627 0.9594 0.9592  391.10

All models were subjected to the same data augmentation
processes, and validation performance was recorded after each
epoch throughout the training process.

The ResNetl8 model had the greatest accuracy value of
0.9615 out of all the architectures that were examined. The
model also did well across all classes, as seen by the precision
of 0.9645, recall of 0.9615, and F1-score of 0.9616. The entire
time spent training was 386.16 seconds.

The ResNet34 model is one of the best models after

ResNet18, with an accuracy of 0.9541. The values for precision,

recall, and Fl-score were 0.9555, 0.9541, and 0.9543,
respectively. The training lasts for 393.01 seconds.

EfficientNet-BO demonstrated high performance with an
accuracy value of 0.9594. The model's Precision 0.9627, Recall
0.9594, and Fl-score 0.9592 metrics also provided high
statistical success in classification. Training time was measured
as 391.10 seconds.

The ResNet50 model produced lower performance with an
accuracy rate of 0.7511. Precision values of 0.8221, Recall
values of 0.7511, and F1-score of 0.7542 are given in Table 1.
The total training time of the model was 424.38 seconds.

The DenseNet121 model was among the models with lower
classification success, with an accuracy rate of 0.7500 and an
Fl-score of 0.7471. Its precision value was calculated as 0.7619
and its recall value as 0.7500. The total training time was
431.29 seconds.

These findings quantify the classification performance of
each model on the specified dataset and reveal the differences
between the models at the metric level. The results were
obtained by systematically calculating all performance metrics
used and are based on the aggregate performance of each
architecture's recorded values throughout the training process.

The ResNetl8 complexity matrix in fig. 4, created by
combining all predictions from a five-fold cross-validation
process, shows the overall performance of the model across
nine classes. The model correctly classified 103 examples in
the Crack class, 99 examples in the Health class, 101 examples
in the Missing_tooth class, and 104 examples in the Spalling
class. In the chipping type categories, 104 correct predictions

were produced for chipping typel, 91 examples for
chipping_type2, 92 examples for chipping type3, 104
examples for chipping type4, and 102 examples for

chipping_type5. Additionally, a limited number of examples
were incorrectly assigned from the Missing tooth class to
Health; from Health to Missing_tooth; from chipping_type2 to
Health and chipping type5; from chipping type3 to
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chipping_typel; and from chipping type4 to Missing_ tooth.
The overall distribution in the matrix shows that the model
produces high accuracy outputs across all classes, with the
majority of the total number of class-based predictions
concentrated on the diagonal.
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Fig. 4. ResNet18 confusion matrix
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The ResNet34 complexity matrix in fig. 5, generated by
combining all predictions from the five-fold cross-validation
process, reveals the overall performance of the model on nine
fault classes. The model correctly classified 104 fault classes in
Crack, 104 fault classes in Spalling, 99 fault classes in
Chipping_typel, 96 fault classes in Chipping type2, 96 fault
classes in Chipping_type3, 100 fault classes in Chipping_type4,
and 100 fault classes in Chipping_type5. While 97 and 97 fault
classes were correctly predicted in Missing tooth and Health,
respectively, limited crosstalk was observed between these two
classes. Additionally, there were low misdirections from
Chipping_typel to Crack and Missing tooth; from
Chipping_type2 to Health and Missing tooth; from
Chipping_type3 to Crack; from Chipping type4 to Spalling;
and from Chipping_typeS5 to Health. The overall distribution
shows that correct classifications are densely clustered on the
diagonal and the model achieves high prediction performance
in all classes.
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Fig. 5. ResNet34 confusion matrix
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The combined complexity matrix for the EfficientNet-BO
model in fig. 6 was obtained by combining all predictions in the
five-fold cross-validation process and shows the overall
performance of the model across nine fault categories. The
model produced 104 correct predictions for the Crack class, 101
for the Health class, 104 for the Spalling class, 104 for the
Chipping_typel class, 100 for the Chipping_type2 class, 104
for the Chipping_type3 class, 104 for the Chipping_type4 class,
and 95 for the Chipping_type5 class. In addition to 82 correct
classifications for the Missing_tooth class, some of the data was
assigned to Chipping typel. In the Health class, a small
number of samples were predicted to the Missing_tooth class,
and in the Chipping_type?2 class, a limited number of samples
were predicted to the Chipping type3 and Chipping type4
classes. The error rate in the other classes was quite low, with
most of the correct predictions concentrated along the diagonal.
This structure shows that the EfficientNet-B0 model produces
a consistent classification output characterized by high

accuracy rates across all classes.
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Fig. 6. Efficientnet b0 confusion matrix
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The combined complexity matrix for the ResNet50 model,
shown in fig. 7, was created by combining all predictions from
five-fold cross-validation and demonstrates the model's overall
classification performance across nine fault classes. The model
produced 104 correct classifications for the Spalling class, 100
for the chipping_typel class, 95 for the chipping_type3 class,
54 for the chipping_type4 class, and 87 for the chipping_type5
class. The Crack, Health, and Missing_tooth classes produced
80, 68, and 66 correct predictions, respectively. However, it
was observed that some of the Crack class was confused with
chipping_typel, while Missing_tooth and Health classes were
confused with chipping type2 and chipping_typeS. Similarly,
the chipping_type?2 class, in addition to 49 correct predictions,
was significantly misdirected towards chipping type3,
chipping_type4, and chipping_ typeS5 classes. In addition to
correct classifications in the chipping type4 class, crosstalk
was observed with chipping_type3 and chipping_type5 classes.
The overall picture shows that a significant number of correct
predictions lie on the diagonal in all classes, but there are
diagonal errors in some classes due to significant intraclass
similarities.
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Fig. 7. ResNet50 confusion matrix
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The DenseNetl21 complexity matrix in fig. 8, created by
combining all predictions obtained as a result of five-fold cross-
validation, holistically reveals the model's success in
distinguishing between classes. The model correctly classified
81 examples with high accuracy in the Crack class; while there
were 80 correct predictions in the Health class, it specifically
directed some examples to the Missing tooth class. In the
Missing_tooth examples, 46 correct predictions were produced,
and a significant portion of the misclassifications were
concentrated in the Health and chipping_typel classes. In the
Spalling class, the model exhibited a remarkable performance
with 102 correct predictions, and misclassification was quite
limited in this class. Similar strong results are seen in the
chipping classes, which represent notch and wear types; 80
correct classifications were obtained for chipping_typel, 49 for
chipping_type2, 91 for chipping_type3, 96 for chipping_type4,
and 77 for chipping type5. However, chipping type2 had
better performance with Missing tooth and chipping type4;
Examples of chipping type3 being confused with
chipping_type4 were observed. The overall distribution in the
matrix indicates that the model recognizes particularly
prominent structural failure types with high accuracy, but
limited confusion occurs between some classes due to similar
visual features.
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Fig. 8. Densenet121 confusion matrix
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The comparative performance distribution of the models
used in the study, based on Accuracy, Precision, Recall, F1-
score, and normalized training time (Training time) metrics, is
presented as a radar chart in fig. 9. The chart displays the values
of each model across five different performance metrics on the
same axis, allowing for holistic monitoring of differences
between models.

Radar Chart: Performance of All Models
(Training time normalized, higher is better)

resnetls8
resnet34
—e— resnet50
densenet121
—e— efficientnet_b0

ifig time (norm)

Fig. 9. Radar chart of deep learning models based on five performance
metrics (Training time normalized; As the value increases, performance
improves.)

In fig. 9, the Accuracy, Precision, Recall, and F1-score metrics
represent the model's classification performance, while the
normalized training time value shows the training times
reduced to a common scale. Each model is positioned according
to its performance values along five axes and shown with a
separate curve on the graph.

The graph shows that ResNet18 and EfficientNet-B0O models
clearly stand out from the other models by producing consistent
and high values across all performance metrics. These two
models achieve near-maximum results, particularly in the
accuracy and F1-score axes, while also being advantageous in
the normalized training time metrics; this demonstrates that
they offer an optimal balance in terms of both high accuracy
and computational efficiency. While ResNet34 is quite similar
to ResNetl8 in terms of its performance profile, it produced
slightly lower scores in some metrics. However, its overall
performance consistency suggests that the model can be
considered a strong alternative. Despite their deeper
architectural structures, ResNet50 and DenseNet121 models
produced lower values in all metrics, with significant
performance losses observed, particularly in the F1-score and
precision dimensions. Furthermore, the normalized training
time values indicate that these two models require longer
computational time.
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IV. CONCLUSION

In this study, we comprehensively evaluated the
performance of various deep learning architectures for
automatically classifying gear faults into nine different
categories. When comparing models tested on the same dataset,
under the same training conditions and the same

hyperparameters, significant differences were observed in
terms of classification accuracy, precision, sensitivity, F1-score,
and training time.
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Fig. 10. Display of Models Accuracy, F1-Score and Training Times Together

The comparative performance graph presented in fig. 10
shows the holistic evaluation of the five deep learning models
examined in terms of accuracy, F1-score, and training time. The
graph provides a clearer understanding of the performance-
efficiency trade off by simultaneously revealing both the
models' predictive performance and computational cost.

According to the results, ResNetl8, ResNet34, and
EfficientNet-B0 models stand out with both high accuracy and
high Fl-score values; they also require shorter training times
compared to other models. The close alignment of these three
models, particularly along the Fl-score curve, demonstrates
that they deliver consistent classification performance even
when faced with different data distributions. Despite its low
computational requirements, EfficientNet-BO produced results
that rivalled ResNet models in both accuracy and F1-score
metrics, making it a strong alternative. In contrast, ResNet50
and DenseNetl21, despite being architecturally deeper,
exhibited significantly lower performance in terms of both
accuracy and F1-score, and also required longer training times.
This suggests that more complex architectures may not always
yield better performance, and that dataset size and problem
complexity should be matched with model depth.

Overall, the graph shows that ResNet18 and EfficientNet-BO
models provide the optimal balance in terms of both prediction
accuracy and computational efficiency. Therefore, these
models can be considered more suitable options for practical
applications.

The results show that ResNetl8 and EfficientNet-BO
architectures are the most successful models in terms of basic
classification metrics such as accuracy and F1-score. ResNet18
model demonstrated the highest performance across all metrics,
making it the most effective architecture overall. EfficientNet-
BO delivered the second-strongest performance, maintaining
computational efficiency while maintaining high accuracy
values. In contrast, ResNet50 and DenseNet121, which have
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deeper structures, exhibited lower classification performance
despite longer training times, demonstrating that these
architectures are not optimal for the dataset size and problem
structure.

Overall, we conclude that medium-depth, computationally
efficient architectures are more suitable for this study. This
finding is particularly important when considering the need for
real-time fault detection in industrial applications. The study
demonstrates that architecture selection plays a critical role in
deep learning-based gear fault detection, not only in terms of
accuracy but also in terms of training time and computational
costs.

In future studies, expanding the dataset, including different
fault types, using pre-trained models and evaluating multi-stage
hybrid systems are seen as potential areas for improvement.
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