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Abstract— In this study, the gear fault classification problem, 

which is of critical importance in industrial mechanical systems, 

was investigated within the scope of five deep learning models 

including ResNet18, ResNet34, ResNet50, DenseNet121 and 

EfficientNet-B0 architectures widely used in the literature. Models 

were trained on the multi-class gear fault image dataset and their 

accuracy performances were compared with their numerical 

values. According to the results, ResNet18 achieved the highest 

accuracy value with 0.9615, while EfficientNet-B0 showed a 

similarly strong performance with 0.9594. ResNet34 ranked third 

with an accuracy value of 0.9541, demonstrating that lightweight 

ResNet architectures offer high generalization ability in gear fault 

detection. On the other hand, deeper architectures, ResNet50 with 

0.7511 accuracy and DenseNet121 with 0.7500 accuracy, did not 

provide a significant increase in accuracy despite increasing 

structural complexity and showed limited performance against 

the characteristics of the data set. These findings reveal that 

representation efficiency rather than model depth is the 

determining factor in gear fault classification problems, and that 

ResNet18 and EfficientNet-B0 architectures are the most suitable 

options for real-time fault detection systems. 

 
Keywords— Gear Fault Classification, Convolutional Neural 

Networks (CNN), ResNet, DenseNet, EfficientNet-B0 

I. INTRODUCTION 

Gear mechanisms play a critical role in power transmission 

systems requiring high reliability, such as automotive, 

aerospace, wind energy, industrial robotics, and production 

lines. They are frequently used in industrial applications due to 

their high torque transmission, precise speed control, and high 

energy efficiency in automotive, aerospace, wind turbines, 

robotics, and production lines. Faults such as pitting, broken 

teeth, wear, surface fatigue, and misalignment in these systems 

directly affect vibration characteristics, reducing system 

performance and leading to unexpected shutdowns. Early 

detection of these faults is critical for maintenance strategies. 

While classical signal processing methods (STFT, WPT, EMD, 

etc.) have been used for many years to analyze gear vibration 

signals, the complexity of nonlinear, noisy, and load-sensitive 

gear vibration signals limits their effectiveness. Therefore, deep 

learning-based fault diagnosis algorithms have become 

increasingly prevalent in the literature in recent years due to 

their automatic feature extraction and high generalization 

capabilities [1]. 

With the transition to intelligent maintenance systems in 

machinery equipment, deep learning-based methods capable of 

automatic feature extraction are playing a significant role in 

industrial fault detection. Convolutional Neural Network (CNN) 

architectures have demonstrated significant success, 

particularly in extracting highly representative features from 

complex vibration data. In a comprehensive study evaluating 

the performance of deep learning in rotating machinery 

diagnosis, Qiu, et al. [2] demonstrated that CNN models 

eliminate the need for manual feature extraction and offer high 

generalization capabilities. Zhao, et al. [3] reported that their 

CNN and transfer learning-based approach achieved high 

accuracy for faults such as gear pitting and broken teeth. 

With these developments, understanding the differences 

between the performance of different CNN architectures in gear 

fault diagnosis has become increasingly important. Residual 

Network (ResNet) architectures, in particular, have eliminated 

the vanishing gradient problem encountered in deep networks 

thanks to the "skip connection" structure introduced by He, et 

al. [4] in 2016. While shallower models such as ResNet18 and 

ResNet34 address real-time applications with lower 

computational costs, ResNet50, with its deeper layer structure, 

offers greater capacity to learn complex fault signatures. 

Various experimental studies have demonstrated that ResNet 

architectures provide high accuracy in diagnosing bearing and 

gear faults [5]. 
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Another powerful architecture, DenseNet121, maximizes 

information flow within the network by forwarding information 

from each layer to all subsequent layers using a dense 

connectivity strategy. Huang, et al. [6] have shown that this 

architecture requires fewer parameters and strengthens gradient 

flow. These features improve accuracy by preventing the loss 

of small fault signatures, especially in complex gear vibration 

signals with low signal-to-noise ratios. In recent years, 

DenseNet121 has become a widely used model for detecting 

bearing, gear, and rotor faults [7]. 

EfficientNetB0 is a highly parameter-efficient CNN 

architecture developed using a compound scaling technique 

that provides balanced scaling across depth, width, and 

resolution. Cui and Zhang [8] demonstrated that the 

EfficientNet family can achieve significantly higher accuracy 

levels with significantly fewer parameters than traditional 

CNNs. Therefore, EfficientNet stands out as a viable solution 

for real-time predictive maintenance systems, embedded 

hardware, and industrial IoT platforms. Recent studies have 

demonstrated that EfficientNet-based models are successful in 

both bearing and gear fault diagnosis [8]. 

While deep learning research on gear fault diagnosis is 

increasing in the literature, systematic comparisons of different 

CNN architectures, particularly those conducted on the same 

dataset, the same processing pipeline, and the same evaluation 

metrics, are quite limited. Comprehensive studies examining 

the impact of depth, connectivity, and parameter scale of CNN 

architectures on fault classification performance are also 

lacking in the literature. In this context, the comparison of 

ResNet18, ResNet34, ResNet50, DenseNet121, and 

EfficientNetB0 architectures fills an important research gap in 

determining the most suitable model for gear fault diagnosis. 

This study comprehensively compares these five 

architectures to assess the ability of modern deep learning 

models to distinguish gear fault types. This study contributes to 

identifying the optimal architecture that offers both high 

accuracy and low computational cost for practical fault 

diagnosis applications. 

II. MATERIAL AND METHODS 

In this study, a deep learning-based approach was developed 

for the automatic classification of fault types occurring in gear 

mechanisms. The methodological process, as shown in Fig. 1, 

was carried out within a comprehensive and systematic 

framework. The image data used in the study was obtained 

from the "Gear Fault Data Set," published on the Mendeley 

Data platform, which includes nine different case classes 

(robust and eight fault types). The raw images were subjected 

to preprocessing steps such as resizing, grayscaling, random 

horizontal flip, and slight rotation to improve model 

performance and reduce overfitting during the training process. 

In this study, widely used convolutional neural network (CNN) 

architectures such as ResNet18, ResNet34, ResNet50, 

DenseNet121, and EfficientNetB0 were comparatively 

evaluated. A 5-fold cross-validation strategy was applied to 

ensure robust and consistent testing of the models. All models 

were trained under the same training protocol, hyperparameter 

settings, and evaluation criteria (accuracy, precision, recall, and 

F1-score), thus ensuring objective experimental comparisons. 

 
Fig. 1. Overall Workflow of the Proposed Fault Classification Framework 

A. Dataset 

The dataset in fig. 2 used in this study consists of sound wave 

images obtained from time-domain representation of sound 

recordings of industrial gear mechanisms. The dataset contains 

a total of nine classes, each representing a different type of 

failure, and each class contains 104 examples. Thus, the total 

dataset size is 936 images. These images visually represent the 

acoustic signatures of various mechanical failures in gear 

systems, such as cracks, fractures, missing teeth, spalling, and 

various types of chipping [9]. The balanced structure of the 

dataset across classes ensures that the models are evaluated in 

a way that is free from biased learning and allows for reliable 

comparison of gear fault classification performance. 
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(a) Healthy, (b) Missing tooth, (c) Crack, (d) Spalling, (e) Chipping_tip_1, 

(f) Chipping_tip_2, (g) Chipping_tip_3, (h) Chipping_tip_4, (i) 
Chipping_tip_5 

Fig. 2. Dataset examples 

The image dataset used in this study was analysed for the 

classification of gear defects/types. A series of preprocessing 

steps were applied to the images to increase the efficiency of 

the training process and strengthen the generalization ability of 

the model. All images were resized to 224x224 pixels to fit the 

model inputs. To reduce computational costs and highlight 

structural features, the images were converted from a 3-channel 

RGB format to a single-channel grayscale format. To prevent 

overfitting of the model and increase the diversity of the 

training data, various data augmentation techniques were 

applied to the training set. In this context, images were mirrored 

horizontally with a 50% probability, performing a random 

horizontal flip. Furthermore, to increase spatial variation in the 

images, each sample was rotated at a random angle within a 

range of ±5 degrees using a random rotation technique. To 

ensure the stability of the training process and ensure that the 

model learns a more robust representation, the images were 

normalized using fixed mean [0.5, 0.5] and standard deviation 

[0.5, 0.5] values, and thus pixel intensities were rescaled to the 

range [-1, 1]. 

B. Deep Learning Architectures 

In this study, five deep learning models, including ResNet18, 

ResNet34, ResNet50, DenseNet121, and EfficientNet-B0 

architectures, which are widely used in the literature, were 

examined. Because the dataset used in this study was grayscale 

(single-channel), the standard RGB (3-channel) input layers of 

all models were modified to accept a single-channel input. 

Similarly, the fully connected output layers of the models were 

restructured to match the number of classes in the dataset. The 

weights of the models were not transferred from a pre-trained 

dataset; all models were trained from scratch by initializing 

them with random weights. 

1)  ResNet18:  ResNet18 is a lightweight CNN architecture 

that uses residual connections and was developed to address the 

gradient fading problem seen in deep networks. This 18-layer 

model is known for its low computational cost and strong 

generalization performance, particularly high accuracy on 

small and medium-sized datasets [10]. 

2)  ResnNet34: ResNet34 maintains the same residual 

connection architecture as ResNet18, but offers a deeper 

structure (34 layers). While its capacity to learn complex 

features is increased by the additional layers, its computational 

cost is higher than ResNet18. Its balanced performance makes 

it a popular choice for image classification tasks [11]. 

3)  ResNet50: ResNet50 is a deeper and more powerful 

version of the classic ResNet architecture, with 50 layers and 

using more efficient bottleneck blocks instead of basic 

convolution blocks. While it offers high representational power, 

it requires more training data and computational power due to 

the large number of parameters [12].  

4)  DenseNet121: DenseNet121 is built on the principle of 

dense connectivity, which allows each layer to be directly fed 

by the outputs of all preceding layers. This approach increases 

feature reuse, resulting in parameter efficiency. However, the 

architecture's dense information flow can lead to excessive 

complexity and longer training times on some datasets [13]. 

5)  EfficientNet-B0: EfficientNet-B0 is an optimized CNN 

architecture designed with a compound scaling strategy that 

simultaneously scales model depth, width, and resolution. It 

offers high accuracy with fewer parameters, making it both 

lightweight and high-performance. It stands out among modern 

architectures for its efficient operation, particularly in resource-

constrained environments [14]. 

C. Training Strategy and Hyperparameters 

Model training was performed in a GPU-accelerated 

environment using the PyTorch library, and all training 

processes were run on an NVIDIA GeForce RTX 5090 GPU. 

Common hyperparameters were used for all models in training. 

Adam was selected as the optimization algorithm, the learning 

rate was set to 0.001, CrossEntropyLoss was used as the loss 

function, the batch size was set to 32, and the number of epochs 

was set to 10. At the end of each epoch, both training and 

validation losses and accuracy values were calculated to 

monitor the learning dynamics of the models and evaluate 

performance trends. 

D.  Confusion Matrix and Performance Metrics 

The confusion matrix, as shown in fig. 3, shows the 

distribution of correct and incorrect classifications for each 

class and explains in detail which types of errors the model is 

successful at and which types of errors it experiences confusion 

at [15]. Values on the diagonal of the matrix represent true 

positives, while values in off-diagonal cells represent the 

model's misclassifications. Based on this structure, derivative 

metrics such as precision, recall, and F1-score were calculated 

for each class, providing a quantitative assessment of the 

model's sensitivity, selectivity, and overall performance on a 

class-by-class basis [16]. The use of confusion matrix is critical, 

especially in multi-class gear fault classification problems, to 
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distinguish between fault types and to determine which fault 

categories the model needs improvement in [17]. 

 
Fig. 3. Conceptual Illustration of True Positive, False Positive, False 

Negative, and True Negative Regions in the 9×9 Confusion Matrix Used for 

Performance Evaluation 

 

Various performance metrics were used to objectively and 

comparably evaluate the classification success of the deep 

learning models used in this study. These metrics allow for a 

comprehensive analysis of the models' effectiveness in gear 

fault detection by quantifying their correct classification ability, 

error types, and overall discrimination power [18]. 

Accuracy represents the proportion of examples correctly 

classified by the model. It is calculated by dividing all correct 

predictions by the total number of examples. It is calculated as 

in Equation 1. This metric provides information about the 

overall performance of the model; however, it may not be a 

sufficient evaluation metric on its own in cases where the 

sample distribution between classes is unbalanced [19]. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
(1) 

 

Precision measures the proportion of examples predicted as 

positive by the model that actually belong to the class of interest. 

It is calculated as in Equation 2. This metric, which evaluates 

the impact of false positive predictions, is especially important 

in situations where the cost of mislabelling is high [20]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Recall (sensitivity) indicates how many of the true examples 

belonging to the relevant class were correctly detected by the 

model. This metric, which evaluates the impact of false 

negative predictions, is especially important in problems where 

missing detections are critical. It is calculated by dividing the 

number of true positive examples by the sum of true positive 

and false negative examples, as in Equation 3 [21]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

The F1-score is the harmonic mean of the Precision and Recall 

metrics, ensuring a balanced evaluation of the two metrics. If 

either the Precision or Recall value is low, the F1-score also 

decreases; therefore, it reflects the overall classification success 

of the models more comprehensively. It is widely used, 

especially in datasets with unbalanced class distributions. It is 

calculated as in Equation 4 [22]. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2x
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

E. 5-Fold Cross Validation 

To reliably assess model performance, 5-fold cross-

validation was applied in the study. At each fold, the dataset 

was re-divided into training and test subsets, and the model was 

trained from scratch, conducting an independent learning 

process. During training, the epoch within the fold that yielded 

the highest validation accuracy was considered the "best 

model" output for that fold, and the prediction results for that 

epoch were recorded. Upon completion of the fold, accuracy, 

precision, recall, and F1-score values were calculated to assess 

both the fold-based performance distribution and the overall 

performance trend. This approach aims to measure the model's 

stability across different data splits and to eliminate the risk of 

relying on a single training-test split [23]. 

F. Calculating Combined Results 

The term "combined," used in this study, refers to a global 

performance measure created by combining the predictions 

obtained in the best epochs of all folds. For each fold, the 

predictions and true labels from the epoch that showed the 

highest validation performance were recorded separately, and 

then all test samples obtained across the five folds were 

combined into a single combined dataset. The overall 

performance of the model was evaluated within a single 

framework by recalculating the accuracy, precision, recall, 

and F1-score metrics on this combined data. Unlike traditional 

fold averages, the combined approach pools predictions from 

the entire dataset, providing a statistically more 

comprehensive and reliable measure of success [24, 25]. Thus, 

it more accurately reflects the model's general generalization 

ability in real-world conditions [26]. 

III. EXPERIMENTAL RESULTS 

This study investigated the classification performance of five 

popular deep learning architectures on gear photos with nine 

different types of faults.  Table 1 shows that the models were 

tested using the Accuracy, Precision, Recall, F1-score, and total 

training time metrics.  The results indicate that architectural 

depth and computational efficiency significantly influence 

performance. 
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TABLE 1. PERFORMANCE RESULTS OF THE CNN MODELS IN TERMS OF 

ACCURACY, PRECISION, RECALL, F1-SCORE, AND TRAINING TIME 

Models Accuracy Precision Recall 
F1-

score 

Training 

Time (s) 

ResNet18 0.9615 0.9645 0.9615 0.9616 386.16 

ResNet34 0.9541 0.9555 0.9541 0.9543 393.01 

ResNet50 0.7511 0.8221 0.7511 0.7542 424.38 

DenseNet121 0.7500 0.7619 0.7500 0.7471 431.29 

EfficientNet-

B0 
0.9594 0.9627 0.9594 0.9592 391.10 

All models were subjected to the same data augmentation 

processes, and validation performance was recorded after each 

epoch throughout the training process. 

The ResNet18 model had the greatest accuracy value of 

0.9615 out of all the architectures that were examined. The 

model also did well across all classes, as seen by the precision 

of 0.9645, recall of 0.9615, and F1-score of 0.9616. The entire 

time spent training was 386.16 seconds. 

The ResNet34 model is one of the best models after 

ResNet18, with an accuracy of 0.9541. The values for precision, 

recall, and F1-score were 0.9555, 0.9541, and 0.9543, 

respectively. The training lasts for 393.01 seconds. 

EfficientNet-B0 demonstrated high performance with an 

accuracy value of 0.9594. The model's Precision 0.9627, Recall 

0.9594, and F1-score 0.9592 metrics also provided high 

statistical success in classification. Training time was measured 

as 391.10 seconds. 

The ResNet50 model produced lower performance with an 

accuracy rate of 0.7511. Precision values of 0.8221, Recall 

values of 0.7511, and F1-score of 0.7542 are given in Table 1. 

The total training time of the model was 424.38 seconds. 

The DenseNet121 model was among the models with lower 

classification success, with an accuracy rate of 0.7500 and an 

F1-score of 0.7471. Its precision value was calculated as 0.7619 

and its recall value as 0.7500. The total training time was 

431.29 seconds. 

These findings quantify the classification performance of 

each model on the specified dataset and reveal the differences 

between the models at the metric level. The results were 

obtained by systematically calculating all performance metrics 

used and are based on the aggregate performance of each 

architecture's recorded values throughout the training process. 

The ResNet18 complexity matrix in fig. 4, created by 

combining all predictions from a five-fold cross-validation 

process, shows the overall performance of the model across 

nine classes. The model correctly classified 103 examples in 

the Crack class, 99 examples in the Health class, 101 examples 

in the Missing_tooth class, and 104 examples in the Spalling 

class. In the chipping type categories, 104 correct predictions 

were produced for chipping_type1, 91 examples for 

chipping_type2, 92 examples for chipping_type3, 104 

examples for chipping_type4, and 102 examples for 

chipping_type5. Additionally, a limited number of examples 

were incorrectly assigned from the Missing_tooth class to 

Health; from Health to Missing_tooth; from chipping_type2 to 

Health and chipping_type5; from chipping_type3 to 

chipping_type1; and from chipping_type4 to Missing_tooth. 

The overall distribution in the matrix shows that the model 

produces high accuracy outputs across all classes, with the 

majority of the total number of class-based predictions 

concentrated on the diagonal. 

 
Fig. 4. ResNet18 confusion matrix 
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The ResNet34 complexity matrix in fig. 5, generated by 

combining all predictions from the five-fold cross-validation 

process, reveals the overall performance of the model on nine 

fault classes. The model correctly classified 104 fault classes in 

Crack, 104 fault classes in Spalling, 99 fault classes in 

Chipping_type1, 96 fault classes in Chipping_type2, 96 fault 

classes in Chipping_type3, 100 fault classes in Chipping_type4, 

and 100 fault classes in Chipping_type5. While 97 and 97 fault 

classes were correctly predicted in Missing_tooth and Health, 

respectively, limited crosstalk was observed between these two 

classes. Additionally, there were low misdirections from 

Chipping_type1 to Crack and Missing_tooth; from 

Chipping_type2 to Health and Missing_tooth; from 

Chipping_type3 to Crack; from Chipping_type4 to Spalling; 

and from Chipping_type5 to Health. The overall distribution 

shows that correct classifications are densely clustered on the 

diagonal and the model achieves high prediction performance 

in all classes. 

 

 
Fig. 5. ResNet34 confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The combined complexity matrix for the EfficientNet-B0 

model in fig. 6 was obtained by combining all predictions in the 

five-fold cross-validation process and shows the overall 

performance of the model across nine fault categories. The 

model produced 104 correct predictions for the Crack class, 101 

for the Health class, 104 for the Spalling class, 104 for the 

Chipping_type1 class, 100 for the Chipping_type2 class, 104 

for the Chipping_type3 class, 104 for the Chipping_type4 class, 

and 95 for the Chipping_type5 class. In addition to 82 correct 

classifications for the Missing_tooth class, some of the data was 

assigned to Chipping_type1. In the Health class, a small 

number of samples were predicted to the Missing_tooth class, 

and in the Chipping_type2 class, a limited number of samples 

were predicted to the Chipping_type3 and Chipping_type4 

classes. The error rate in the other classes was quite low, with 

most of the correct predictions concentrated along the diagonal. 

This structure shows that the EfficientNet-B0 model produces 

a consistent classification output characterized by high 

accuracy rates across all classes. 

 
Fig. 6. Efficientnet_b0 confusion matrix 
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The combined complexity matrix for the ResNet50 model, 

shown in fig. 7, was created by combining all predictions from 

five-fold cross-validation and demonstrates the model's overall 

classification performance across nine fault classes. The model 

produced 104 correct classifications for the Spalling class, 100 

for the chipping_type1 class, 95 for the chipping_type3 class, 

54 for the chipping_type4 class, and 87 for the chipping_type5 

class. The Crack, Health, and Missing_tooth classes produced 

80, 68, and 66 correct predictions, respectively. However, it 

was observed that some of the Crack class was confused with 

chipping_type1, while Missing_tooth and Health classes were 

confused with chipping_type2 and chipping_type5. Similarly, 

the chipping_type2 class, in addition to 49 correct predictions, 

was significantly misdirected towards chipping_type3, 

chipping_type4, and chipping_type5 classes. In addition to 

correct classifications in the chipping_type4 class, crosstalk 

was observed with chipping_type3 and chipping_type5 classes. 

The overall picture shows that a significant number of correct 

predictions lie on the diagonal in all classes, but there are 

diagonal errors in some classes due to significant intraclass 

similarities. 

 
Fig. 7. ResNet50 confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DenseNet121 complexity matrix in fig. 8, created by 

combining all predictions obtained as a result of five-fold cross-

validation, holistically reveals the model's success in 

distinguishing between classes. The model correctly classified 

81 examples with high accuracy in the Crack class; while there 

were 80 correct predictions in the Health class, it specifically 

directed some examples to the Missing_tooth class. In the 

Missing_tooth examples, 46 correct predictions were produced, 

and a significant portion of the misclassifications were 

concentrated in the Health and chipping_type1 classes. In the 

Spalling class, the model exhibited a remarkable performance 

with 102 correct predictions, and misclassification was quite 

limited in this class. Similar strong results are seen in the 

chipping classes, which represent notch and wear types; 80 

correct classifications were obtained for chipping_type1, 49 for 

chipping_type2, 91 for chipping_type3, 96 for chipping_type4, 

and 77 for chipping_type5. However, chipping_type2 had 

better performance with Missing_tooth and chipping_type4; 

Examples of chipping_type3 being confused with 

chipping_type4 were observed. The overall distribution in the 

matrix indicates that the model recognizes particularly 

prominent structural failure types with high accuracy, but 

limited confusion occurs between some classes due to similar 

visual features. 

 
Fig. 8. Densenet121 confusion matrix 
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The comparative performance distribution of the models 

used in the study, based on Accuracy, Precision, Recall, F1-

score, and normalized training time (Training time) metrics, is 

presented as a radar chart in fig. 9. The chart displays the values 

of each model across five different performance metrics on the 

same axis, allowing for holistic monitoring of differences 

between models. 

 
Fig. 9. Radar chart of deep learning models based on five performance 

metrics (Training time normalized; As the value increases, performance 
improves.) 

 

In fig. 9, the Accuracy, Precision, Recall, and F1-score metrics 

represent the model's classification performance, while the 

normalized training time value shows the training times 

reduced to a common scale. Each model is positioned according 

to its performance values along five axes and shown with a 

separate curve on the graph. 

The graph shows that ResNet18 and EfficientNet-B0 models 

clearly stand out from the other models by producing consistent 

and high values across all performance metrics. These two 

models achieve near-maximum results, particularly in the 

accuracy and F1-score axes, while also being advantageous in 

the normalized training time metrics; this demonstrates that 

they offer an optimal balance in terms of both high accuracy 

and computational efficiency. While ResNet34 is quite similar 

to ResNet18 in terms of its performance profile, it produced 

slightly lower scores in some metrics. However, its overall 

performance consistency suggests that the model can be 

considered a strong alternative. Despite their deeper 

architectural structures, ResNet50 and DenseNet121 models 

produced lower values in all metrics, with significant 

performance losses observed, particularly in the F1-score and 

precision dimensions. Furthermore, the normalized training 

time values indicate that these two models require longer 

computational time. 

 

 

 

IV. CONCLUSION 

In this study, we comprehensively evaluated the 

performance of various deep learning architectures for 

automatically classifying gear faults into nine different 

categories. When comparing models tested on the same dataset, 

under the same training conditions and the same 

hyperparameters, significant differences were observed in 

terms of classification accuracy, precision, sensitivity, F1-score, 

and training time. 

 
Fig. 10. Display of Models Accuracy, F1-Score and Training Times Together 

 

The comparative performance graph presented in fig. 10 

shows the holistic evaluation of the five deep learning models 

examined in terms of accuracy, F1-score, and training time. The 

graph provides a clearer understanding of the performance-

efficiency trade off by simultaneously revealing both the 

models' predictive performance and computational cost. 

According to the results, ResNet18, ResNet34, and 

EfficientNet-B0 models stand out with both high accuracy and 

high F1-score values; they also require shorter training times 

compared to other models. The close alignment of these three 

models, particularly along the F1-score curve, demonstrates 

that they deliver consistent classification performance even 

when faced with different data distributions. Despite its low 

computational requirements, EfficientNet-B0 produced results 

that rivalled ResNet models in both accuracy and F1-score 

metrics, making it a strong alternative. In contrast, ResNet50 

and DenseNet121, despite being architecturally deeper, 

exhibited significantly lower performance in terms of both 

accuracy and F1-score, and also required longer training times. 

This suggests that more complex architectures may not always 

yield better performance, and that dataset size and problem 

complexity should be matched with model depth. 

Overall, the graph shows that ResNet18 and EfficientNet-B0 

models provide the optimal balance in terms of both prediction 

accuracy and computational efficiency. Therefore, these 

models can be considered more suitable options for practical 

applications. 

The results show that ResNet18 and EfficientNet-B0 

architectures are the most successful models in terms of basic 

classification metrics such as accuracy and F1-score. ResNet18 

model demonstrated the highest performance across all metrics, 

making it the most effective architecture overall. EfficientNet-

B0 delivered the second-strongest performance, maintaining 

computational efficiency while maintaining high accuracy 

values. In contrast, ResNet50 and DenseNet121, which have 
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deeper structures, exhibited lower classification performance 

despite longer training times, demonstrating that these 

architectures are not optimal for the dataset size and problem 

structure. 

Overall, we conclude that medium-depth, computationally 

efficient architectures are more suitable for this study. This 

finding is particularly important when considering the need for 

real-time fault detection in industrial applications. The study 

demonstrates that architecture selection plays a critical role in 

deep learning-based gear fault detection, not only in terms of 

accuracy but also in terms of training time and computational 

costs. 

In future studies, expanding the dataset, including different 

fault types, using pre-trained models and evaluating multi-stage 

hybrid systems are seen as potential areas for improvement. 
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